Интернет Windows Android

Лабораторный блок питания из китайских компонентов. Простой регулируемый стабилизированный блок питания Схема регулируемого импульсного блока питания 0 30в

Представляем проект стабилизированного источника питания постоянного тока с контролем защиты 0,002-3 А и выходного напряжения 0-30 В. Предельная мощность выхода почти 100 ватт - 30 В постоянного напряжения и ток 3 А, что идеально подходит для вашей радиолюбительской лаборатории. Здесь есть на любое значение напряжения между 0 и 30 В. Схема эффективно контролирует выходной ток от нескольких мА (2 мА) и до максимального значения - трех ампер. Данная функция обеспечивает возможность экспериментировать с разными устройствами, ведь можно ограничить ток без всякого страха, что оно может быть повреждено, если что-то пойдет не так. Существует также визуальная индикация того, что произошла перегрузка, так что вы можете сразу увидеть, что ваши подключенные схемы превышают установленные лимиты.

Принципиальная схема ЛБП 0-30В

Более подробно про номиналы радиоэлементов к данной схеме смотрите .

Рисунок печатной платы БП

Технические характеристики блока питания

  • Входное напряжение: ................ переменное 25 В
  • Входной ток: ................ 3 A (Макс.)
  • Выходное напряжение: ............. 0 до 30 В регулируемое
  • Выходной ток: ............. 2 мА - 3 A регулируемый
  • Пульсации выходного напряжения: .... не более 0.01 %

Начнем с сетевого трансформатора со вторичной обмоткой мощностью 24 В/3 A, который подключен через входные контакты 1 и 2. Переменное напряжение вторичной обмотки трансформаторов выпрямляется мостом, образованным четырьмя диодами D1-D4. Напряжение постоянного тока, на выходе моста сглаживается фильтром из конденсатор C1 и резистора R1.

Далее схема работает следующим образом: диод D8 - стабилитрон 5,6 В, здесь работает с нулевым током. Напряжение на выходе U1 постепенно увеличивается до его включения. Когда это происходит, схема стабилизируется и опорное напряжение (5,6 В) проходит через резистор R5. Ток, который течет через инвертирующий вход ОУ является незначительным, поэтому один и тот же ток проходит через R5 и R6, и, как два резисторы имеют то же самое значение напряжения между двумя из них в серии будет ровно в два раза больше напряжения по каждой из них. Таким образом, напряжение на выходе ОУ (выв. 6 U1) 11,2 В, в два раза больше опорного напряжения стабилитрона. ОУ U2 имеет постоянный коэффициент усиления примерно 3 по формуле A=(R11+R12)/R11, и поднимает контрольное напряжение 11.2 В до 33 В. Переменник RV1 и резистор R10 используются для регулировки выходного напряжения таким образом, что оно может быть снижено до 0 вольт.

Другой важной особенностью схемы является возможность задать максимальный выходной ток, который можно преобразовать от источника постоянного напряжения на постоянном токе. Чтобы сделать это возможным схема отслеживает падение напряжения на резисторе R25, который соединен последовательно с нагрузкой. Ответственным за эту функцию есть элемент U3. Инвертирующий вход U3 получает стабильное напряжение .

Конденсатор C4 увеличивают устойчивость схемы. Транзистор Q3 используется для обеспечения визуальной индикации ограничителя тока.

Теперь давайте рассмотрим основы построения электронной схемы на печатной плате. Она изготавливается из тонкого изоляционного материала, покрытого тонким слоем проводящей меди таким образом, чтобы сформировать необходимые проводники между различными компонентами схемы. Использование правильно спроектированной печатной платы - это очень важно, так как это ускоряет монтаж и значительно снижает вероятность допущения ошибок. Для защиты от окисления медь желательно лудить и покрыть специальным лаком.

В этом приборе лучше использовать цифровой измеритель, в целях повышения чувствительности и точности контроля напряжения выхода, так как стрелочные индикаторы не могут чётко зафиксировать небольшое (на десятки милливольт) изменение напряжения.

Если блок питания не заработал

Проверьте свою пайку на возможные плохие контакты, КЗ через соседние дорожки или остатки флюса, который обычно и вызывает проблемы. Проверьте еще раз все внешние соединения со схемой, чтобы увидеть, все ли провода правильно подключены к плате. Убедитесь, что все полярные компоненты были припаяны в нужном направлении. Проверьте устройство на предмет неисправных или поврежденных компонентов. Файлы проекта .

Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать? Батарейки? Аккумуляторы? Нет! Блок питания, о нём и пойдёт речь.

Схема его очень проста и надёжна, она имеет защиту от КЗ, плавную регулировку выходного напряжения.
На диодном мосте и конденсаторе C2 собран выпрямитель, цепь C1 VD1 R3 стабилизатор опорного напряжения, цепь R4 VT1 VT2 усилитель тока для силового транзистора VT3, защита собрана на транзисторе VT4 и R2, резистором R1 выполняется регулировка.

Трансформатор я брал из старого зарядного от шуруповерта, на выходе я получил 16В 2А
Что касается диодного моста (минимум на 3 ампера), брал его из старого блока ATX также как и электролиты, стабилитрон, резисторы.

Стабилитрон использовал на 13В, но подойдёт и советский Д814Д.
Транзисторы были взяты из старого советского телевизора, транзисторы VT2, VT3 можно заменить на один составной например КТ827.

Резистор R2 проволочный мощностью 7 Ватт и R1 (переменный) я брал нихромовый, для регулировки без скачков, но в его отсутствии можно поставить обычный.

Состоит из двух частей: на первой собран стабилизатор и защита и, а на второй силовая часть.
Все детали монтируются на основной плате (кроме силовых транзисторов), на вторую плату припаяны транзисторы VT2, VT3 их крепим на радиатор с использованием термопасты, корпуса (коллекторы) изолировать ненужно.Схема повторялась много раз в настройке не нуждается. Фотографии двух блоков приведены ниже С большим радиатором 2А и маленьким 0,6А.

Индикация
Вольтметр: для него нам нужен резистор на 10к и переменный на 4,7к и индикатор я брал м68501 но можно и другой. Из резисторов соберём делитель резистор на 10к не даст головке сгореть, а резистором на 4,7к выставим максимальное отклонение стрелки.

После того как делитель собран и индикация работает нужно от градуировать его, для этого вскрываем индикатор и наклеиваем на старую шкалу чистую бумагу и вырезаем по контуру, удобнее всего обрезать бумагу лезвием.

Когда все приклеено и высохло, подключаем мультиметр параллельно нашему индикатору, и всё это к блоку питания, отмечаем 0 и увеличиваем напряжение до вольта отмечаем и т.д.

Амперметр: для него берём резистор на 0,27 ома!!! и переменный на 50к, схема подключения ниже, резистором на 50к выставим максимальное отклонение стрелки.

Градуировка такая-же только изменяется подключение см ниже в качестве нагрузки идеально подходит галогеновая лампочка на 12 в.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2, VT4 Биполярный транзистор

КТ815Б

2 В блокнот
VT3 Биполярный транзистор

КТ805БМ

1 В блокнот
VD1 Стабилитрон

Д814Д

1 В блокнот
VDS1 Диодный мост 1 В блокнот
C1 100мкФ 25В 1 В блокнот
C2, C4 Электролитический конденсатор 2200мкФ 25В 2 В блокнот
R2 Резистор

0.45 Ом

1 В блокнот
R3 Резистор

1 кОм

1 В блокнот
R4 Резистор

Этот регулированный блок питания сделан по очень распространённой схеме (а значит её успешно повторяли уже сотни раз) на импортных радиоэлементах. Напряжение выхода плавно меняется в пределах 0-30 В, ток нагрузки может достигать 5 ампер, но так как трансформатор попался не слишком мощный — то удалось снять с него только 2,5 А.

Схема БП с регулировками тока и напряжения


Схема принципиальная
R1 = 2,2 KOhm 1W
R2 = 82 Ohm 1/4W
R3 = 220 Ohm 1/4W
R4 = 4,7 KOhm 1/4W
R5, R6, R13, R20, R21 = 10 KOhm 1/4W
R7 = 0,47 Ohm 5W
R8, R11 = 27 KOhm 1/4W
R9, R19 = 2,2 KOhm 1/4W
R10 = 270 KOhm 1/4W
R12, R18 = 56KOhm 1/4W
R14 = 1,5 KOhm 1/4W
R15, R16 = 1 KOhm 1/4W
R17 = 33 Ohm 1/4W
R22 = 3,9 KOhm 1/4W
RV1 = 100K trimmer
P1, P2 = 10KOhm linear pontesiometer
C1 = 3300 uF/50V electrolytic
C2, C3 = 47uF/50V electrolytic
C4 = 100nF polyester
C5 = 200nF polyester
C6 = 100pF ceramic
C7 = 10uF/50V electrolytic
C8 = 330pF ceramic
C9 = 100pF ceramic
D1, D2, D3, D4 = 1N5402,3,4 diode 2A – RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V Zener
D9, D10 = 1N4148
D11 = 1N4001 diode 1A
Q1 = BC548, NPN transistor or BC547
Q2 = 2N2219 NPN transistor
Q3 = BC557, PNP transistor or BC327
Q4 = 2N3055 NPN power transistor
U1, U2, U3 = TL081, operational amplifier
D12 = LED diode

Вот ещё вариант этой схемы:

Используемые детали

Тут был использован трансформатор TS70/5 (26 V — 2,28 А и 5,8 V — 1 А). Итого 32 вольта вторичное напряжение. Применены в данном варианте операционники uA741 вместо TL081, так как они были в наличии. Транзисторы также не критичны — лишь бы по току и напряжению подходили, ну и по структуре естественно.


Печатная плата с деталями

Светодиод сигнализирует о переходе в режим СТ (стабильный ток). Это не короткое замыкание или перегрузка, а стабилизация тока — полезная функция работы блока питания. Это можно использовать, например, для зарядки аккумуляторных батарей — в режиме холостого хода устанавливается конечное значение напряжения, затем подключаем провода и устанавливаем ограничение тока. В первой фазе зарядки, БП работает в режиме CТ (горит светодиод) — ток зарядки такой как установлен, а напряжение медленно растет. Когда по мере зарядки аккумулятора напряжение достигает установленного порога, блок питания переходит в режим стабилизации напряжения (СН): светодиод гаснет, ток начинает уменьшаться, а напряжение остается на заданном уровне.

Предельное значение напряжения питания на конденсаторе фильтра 36 В. Следите за его вольтажом — иначе не выдержит и бахнет!

Иногда имеет смысл применять по два потенциометра для регулирования тока и напряжения по принципу грубой и точной регулировки.


Вид внутри корпуса на индикаторы

Провода внутри стоит связать в жгуты тонкими кабельными стяжками.


Диод и транзистор на радиаторе

Корпус самодельного блока питания

Для БП использован корпус модели Z17W. Печатная плата размещается в нижней части, прикручиваясь к днищу винтами 3 мм. Под корпусом приделаны резиновые черные ножки от какого-то прибора, вместо жестких пластиковых, которые были в комплекте. Это важно, иначе при нажатиях на кнопки и вращении регуляторов блок питания будет «ездить» по столу.


Блок питания регулированый: самодельная конструкция

Надписи на лицевой панели сделаны в графическом редакторе, затем печать на меловой самоклеющейся бумаге. Вот такая вышла самоделка, а если вам мало такой мощности — .

R3 10k (4k7 – 22k) reostat

R6 0.22R 5W (0,15- 0.47R)

R8 100R (47R – 330R)

C1 1000 x35v (2200 x50v)

C2 1000 x35v (2200 x50v)

C5 100n ceramick (0,01-0,47)

T1 KT816 (BD140)

T2 BC548 (BC547)

T3 KT815 (BD139)

T4 KT819(КТ805,2N3055)

T5 KT815 (BD139)

VD1-4 КД202 (50v 3-5A)

VD5 BZX27 (КС527)

VD6 АЛ307Б, К (RED LED)

Регулируемый стабилизированный блок питания – 0-24 V , 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно - если стабилитрон на 27 вольт, то максимальное выходное напряжение будет в пределах 24-25 вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~ Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6 по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения, извиняюсь - потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот, тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается... Но попробуем выразиться математически, то бишь

школьный курс физики

где Р - это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J - ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт... Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ, аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая.... Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника.... Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»


Схема подключения запараллеленных транзисторов вместо одного




Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.
Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.

Сборка регулируемого стабилизированного блока питания

Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.






Проверка блока питания

Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.