Интернет Windows Android

Аналоговый и цифровой сигнал. Типы сигналов и как это действует

Понятия «информация» (от лат. informatio - разъяснение, изложение) и «сообщение» в настоящее время неразрывно связаны между собой.

Информация – это сведения, являющиеся объектом передачи, распределения, преобразования, хранения или непосредственного использования. Сообщение является формой представления информации. Известно, что 80...90% информации человек получает через органы зрения и 10...20%-через органы слуха. Другие органы чувств дают в сумме 1...2 % информации.

Информацию передают в виде сообщений . Сообщение - форма выражения (представления) информации, удобная для передачи на расстояние. Примерами сообщений служат тексты телеграмм, речь, музыка, телевизионное изображение, данные на выходе компьютера, команды в системе автоматического управления объектами и т.п. Сообщения передают с помощью сигналов, которые являются носителями информации. Основным видом сигналов являются электрические сигналы. В последнее время всё большее распространение получают оптические сигналы, н/р, в волоконно-оптических линиях передачи информации. Сигнал - физический процесс, отображающий передаваемое сообщение. Отображение сообщения обеспечивается изменением к-л физической величины, характеризующей процесс. Сигнал передаёт (развёртывает) сообщение во времени, то есть всегда является функцией времени. Сигналы формируются путём изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением.

Эта величина является информационным параметром сигнала. Информационный параметр сообщения - параметр, в изменении которого "заложена" информация. Для звуковых сообщений информационным параметром является мгновенное значение звукового давления, для неподвижных изображений - коэффициент отражения, для подвижных - яркость свечения участков экрана.

При этом важное значение имеют понятия качества и скорости передачи информации.

Качество передачи информации тем выше, чем меньше искажения информации на приёмной стороне. С увеличением скорости передачи информации требуется принимать специальные меры, препятствующие потерям информации и снижению качества передачи информации.

Передача сообщений на расстояние осущ-ся с помощью к-л материального носителя, н/р, бумаги или магнитной ленты или физического процесса, например, звуковых или электромагнитных волн, тока и т.д.

Передача и хранение информации осуществляется с помощью различных знаков (символов), которые позволяют представить её в некоторой форме.

Сообщения могут быть функциями времени, например речь при передаче телефонных разговоров, температура или давление при передаче телеметрических данных, спектакль при передаче по телевидению и т.п. В других случаях сообщение не является функцией времени (например, текст телеграммы, неподвижное изображение и т.д.). Сигнал передаёт сообщение во времени. Следовательно, он всегда является функцией времени, даже если сообщение (например, неподвижное изображение) таковым не является. Различают 4 вида сигналов: непрерывный сигнал непрерывного вр. (рис.2.2, а), непрерывный дискретного вр. (рис.2.2, б), дискретный непрерывного вр. (рис.2.2, в) и дискретный дискретного времени (рис2.2, г).

Рисунок 2.2 – Непрерывный сигнал непрерывного времени (а), непрерывный сигнал дискретного времени (б), дискретный сигнал непрерывного времени (в), дискретный сигнал дискретного времени (г).

Непрерывные сигналы непрерывного вр. наз-т сокращенно непрерывными (аналог.) сигн-ми. Они могут изменяться в произвольные моменты, принимая любые значения из непрерывного множества возможных значений (синусоида).

Непрерывные сигналы дискретного вр. могут принимать произвольные значения, но изменяться только в определенные, наперед заданные (дискретные) моменты t 1 , t 2 , t 3 .

Дискретные сигналы непрерывного времени отличаются тем, что они могут изменяться в произвольные моменты, но их величины принимают только разрешенные (дискретные) значения.

Дискретные сигналы дискретного времени (сокращенно дискретные) в дискретные моменты вр.могут принимать только разреш-е (дискретные) значения.

По характеру изменения информационных параметров различают непрерывные и дискретные сообщения.

Аналоговый сигнал является непрерывной или частично непрерывной функцией времени Х(t). Мгновенные значения сигнала являются аналогом физической величины рассматриваемого процесса.

Дискретный сигнал представляет собой дискретные импульсы, следую­щие друг за другом с интервалом времени Δt, ширина импульсов одинакова, а уровень (площадь импульса) является аналогом мгновенного значения некоторой физической величины, которую представляет дискретный сигнал.

Цифровой сигнал представляет собой дискретный ряд цифр, следующих друг за другом с интервалом времени Δt, в виде двоичных разрядов и представляющих мгновенное значение некоторой физической величины.

Непрерывный или аналоговый сигнал это сигнал, который может принимать любые уровни значений в некотором интервале величин. Непрерывный по времени сигнал это сигнал, заданный на всей оси времени.

Например, речь является сообщением непрерывным как по уровню, так и по времени, а датчик температуры, выдающий её значения через каждые 5 мин, служит источником сообщений, непрерывных по величине, но дискретных по времени.

Понятие о количестве информации и возможности ее измерения является основой теории информации. Теория информации сформировалась в 20 веке. Пионерами теория информации считают Клод Шеннонна (США), А.Н. Колмогорова (СССР) Р. Хартли (США) и др. Согласно Клоду Шеннонну, информация - снятая неопределенность. Т.е. информативность сообщения х-ся содержащейся в ней полезной информации т.е. та часть сообщения которая уменьшает существующую до ее получения неопределнность чего-либо.

Лекция 1

Основные типы сигналов и их математическое описание.

Основные типы сигналов: аналоговый, дискретный, цифровой.

Аналоговый - это сигнал, непрерывный во времени и по состоянию (рис.1а). Сигнал описывается непрерывной (или кусочно-непрерывной) функцией Х (t ). При этом и аргумент и сама функция могут принимать любые значения из некоторых интервалов:

t " ≤ t t "" , x " ≤ x x "".

Дискретный - это сигнал, дискретный во времени и непрерывный по состоянию (рис.1б). Описывается решетчатой функцией Х (n * T ), где n - номер отсчета (1,2,3,…). Интервал Т называют период дискретизации, а обратную величину f д=1/Т – частота дискретизации. Решетчатая функция определена только в моменты времени n * T и может только в эти моменты принимать любые значения из некоторого интервала x " ≤ x x "". Значения решетчатой функции, а соответственно и самого сигнала в моменты времени n * T , называют отсчетами. (Дискретный сигнал может быть как вещественным, так и комплексным).

Цифровой - это сигнал, дискретный как во времени, так и по состоянию (рис.1в). Сигналы этого типа так же описываются решетчатыми функциями Х ц(n * T ), которые могут принимать лишь конечное число значений из некоторого конечного интервала x " ≤ x x "". Эти значения называются уровнями квантования, а соответствующие функции – квантованными.

При анализе дискретных сигналов удобно пользоваться нормированным временем
, иначе , т.е. номер отсчета дискретного сигнала может интерпретироваться как нормированное время. При переходе нормированному времени дискретный сигнал можно рассматривать как функцию целочисленной переменной n . То есть далее Х (n ) равнозначно Х (n · T ).

Нормирование частоты.

По теореме Котельникова максимальная частота аналогового сигнала f в не должна быть более f д/2. Поэтому все дискретные сигналы целесообразно рассматривать в диапазоне . При этом вводится понятие нормированной частоты

или

и рассматривать дискретный сигнал f в области

или

Применение нормированной частоты позволяет исследовать частотные характеристики дискретных систем и спектры дискретных сигналов в единой полосе частот. Для ЦОС важны не абсолютные значения частоты сигнала и частоты дискретизации, а их отношение, т.е. значение нормированной частоты.

Например для 2х дискретных косинусоид:

где

В итоге:

Дискретные сигналы их одинаковы, так как равны их нормированные частоты, они, лишь, по разному будут во времени.

В общем случае дискретная косинусоида в области нормированных частот имеет вид:

Обобщенная схема Цифровой обработки сигнала.

Процесс ЦОС включает 3 этапа:

Формирователь последовательности чисел Х(n * T ) из аналогового сигнала x (t ) ;

Преобразование последовательности Х(n * T ) по заданному алгоритму цифровым процессором обработки сигналов (ЦПОС) в новую, выходную числовую последовательность y(n * T ) ;

Формирование результирующего аналогового сигнала y (t ) из последовательности y (n * T ).

Частота дискретизации f д выбирается: f д ≥ 2f в.

Реальные сигналы не удовлетворяют этому требованию. Поэтому ставят ФНЧ, ограничивающий спектр. Так как энергия реальных сигналов уменьшается с ростом частоты, то искажения вносимые ФНЧ незначительны (рис.3 а и б), а также спектры ниже:

Уровни квантования (рис 1.в.) кодируются двоичными числами, поэтому на выходе АЦП имеем последовательность двоичных чисел
. Цифровой сигнал
отличается от дискретного
на величину:

Ошибка квантования.

Для её снижения необходимо увеличивать количество уровней квантования. Дискретный сигнал поступает в ЦПОС, который по алгоритму каждому входному отчету ставит в однозначное соответствие выходной сигнал
. При этом количество операций (умножений, сложений, инверсий, пересылок и т.д.) для получения одного отсчета может исчисляться сколько угодно. Однако период обработки (время вычисления) не может быть больше периода дискретизации . А это может быть лишь, если тактовая частота f Т ЦПОС >> f Д.

Далее ЦАП формирует ступенчатый аналоговый сигнал (t ), ступеньки которого сглаживаются фильтром, получая аналоговый y (t ).

Сигналы – носители информации в средствах автоматизации могут различаться как по физической природе и параметрам, так и по форме представления информации. В рамках ГСП (государственная система приборов) применяются в серийном производстве средств автоматизации следующие типы сигналов:

Электрический сигнал (напряжение, сила или частота электрического тока);

Пневматический сигнал (давление сжатого воздуха);

Гидравлический сигнал (давление или перепад давлений жидкости).

Соответственно в рамках ГСП формируются электрическая, пневматическая и гидравлическая ветви средств автоматизации

По форме представления информации сигнал может быть аналоговым, импульсным и кодовым.

Аналоговый сигнал характеризуется текущими изменениями какого–либо физического параметра–носителя (например, мгновенными значениями электрического напряжения или тока). Такой сигнал существует практически в каждый данный момент времени и может принимать любые значения в пределах заданного диапазона изменений параметра.

Импульсный сигнал характерен представлением информации только в дискретные моменты времени, т.е. наличием квантования по времени. При этом информация представляется в виде последовательности импульсов одинаковой продолжительности, но различной амплитуды (амплитудно-импульсная модуляция сигнала) или одинаковой амплитуды, но разной продолжительности (широтно-импульсная модуляция сигнала).

Кодовый сигнал представляет собой сложную последовательность импульсов, используемую для передачи цифровой информации. При этом каждая цифра может быть представлена в виде сложной последовательности импульсов, т.е. кода, а передаваемый сигнал является дискретным (квантуется) и по времени, и по уровню.

Оптический сигнал – световая волна, несущая определенную информацию. Особенностью световой волны по сравнению с радиоволной является то, что вследствие малой длины волны в ней может быть практически осуществлена передача, прием и обработка сигналов, модулированных не только по времени, но и по пространственным координатам. Это позволяет значительно увеличить объем вносимой в оптический сигнал информации. Оптический сигнал – функция четырех переменных (x,y,z,t) – 3-х координат и времени. Электромагнитная волна – изменение во времени и в каждой точке пространства электрического и магнитного полей, которые связаны между собой по закону индукции. Электромагнитная волна характеризуется взаимно перпендикулярными векторами напряженностей электрического E и магнитного H полей, которые изменяются во времени по одному и тому же гармоническому закону.

Аналоговый сигнал является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения независимой переменной. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в своем развитии (динамике изменения значений определенных свойств) во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (аналогичен) порождающему его процессу. Пример математической записи конкретного аналогового сигнала: y (t ) = 4.8exp[-(t -4) 2 /2.8]. Пример графического отображения данного сигнала приведен на Рис. 2.2.1, при этом как числовые величины самой функция, так и ее аргументов, могут принимать любые значения в пределах некоторых интервалов y 1 £ y £ y 2 , t 1 £ t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует непрерывное пространство, в котором любая точка может быть определена с бесконечной точностью.

Рис. 2.2.1. Графическое отображение сигнала y (t ) = 4.8 exp[-(t -4) 2 /2.8].

Дискретный сигнал по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью y (n ×Dt ), где y 1 £ y £ y 2 , Dt - интервал между отсчетами (интервал дискретизации сигнала), n = 0, 1, 2, ..., N – нумерация дискретных значений отсчетов. Если дискретный сигнал получен дискретизацией аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам n Dt .

Пример дискретизации аналогового сигнала, приведенного на Рис. 2.2.1, представлен на Рис. 2.2.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y (n ).

При неравномерной дискретизации сигнала обозначения дискретных последовательностей (в текстовых описаниях) обычно заключаются в фигурные скобки - {s (t i )}, а значения отсчетов приводятся в виде таблиц с указанием значений координат t i . Для коротких неравномерных числовых последовательностей применяется и следующее числовое описание: s (t i ) = {a 1 , a 2 , ..., a N }, t = t 1 , t 2 , ..., t N .

Цифровой сигнал квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k [y (n Dt )], где Q k - функция квантования с числом уровней квантования k , при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде числового массива по последовательным значениям аргумента при Dt = const, но, в общем случае, сигнал может задаваться и в виде таблицы для произвольных значений аргумента.



По существу, цифровой сигнал является формализованной разновидностью дискретного сигнала при округлении значений последнего до определенного количества цифр, как это показано на Рис. 2.2.3. В цифровых системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов и следовательно всегда является цифровым, С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов.

Рис. 2.2.2. Дискретный сигнал Рис. 2.2.3. Цифровой сигнал

y (n Dt ) = 4.8 exp[-(n Dt -4) 2 /2.8], Dt = 1. y n = Q k , Dt =1, k = 5.

В принципе, квантованным по своим значениям может быть и аналоговый сигнал, зарегистрированный соответствующей цифровой аппаратурой (Рис. 2.2.4). Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство дискретных и цифровых сигналов, с которыми приходится иметь дело, являются дискретизированными аналоговыми сигналами. Но существуют сигналы, которые изначально относятся к классу дискретных, например гамма-кванты.

Рис. 2.2.4. Квантованный сигнал y (t ) = Q k , k = 5.

Спектральное представление сигналов. Кроме привычного временного (координатного) представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты, т.е. по аргументам, обратным аргументам временного (координатного) представления. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала. Математически спектр сигналов описывается функциями значений амплитуд и начальных фаз гармонических колебаний по непрерывному или дискретному аргументу - частоте . Спектр амплитуд обычно называется амплитудно-частотной характеристикой (АЧХ) сигнала, спектр фазовых углов – фазо-частотной характеристикой (ФЧХ). Описание частотного спектра отображает сигнал так же однозначно, как и координатное описание.

На Рис. 2.2.5 приведен отрезок сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний. Математическое описание сигнала определяется формулой:

где A n = {5, 3, 6, 8} - амплитуда; f n = {0, 40, 80, 120} - частота (Гц); φ n = {0, -0.4, -0.6, -0.8} - начальный фазовый угол (в радианах) колебаний; n = 0,1,2,3.

Рис. 2.2.5. Временное представление сигнала.

Частотное представление данного сигнала (спектр сигнала в виде АЧХ и ФЧХ) приведено на Рис. 2.2.6. Обратим внимание, что частотное представление периодического сигнала s (t ), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с непрерывным временным представлением, определенным в интервале от -¥ до +¥.

Рис. 2.2.6. Частотное представление сигнала.

Графическое отображение аналоговых сигналов (Рис. 2.2.1) особых пояснений не требует. При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента (Рис. 2.2.6), либо способ огибающей (плавной или ломанной) по значениям отсчетов (пунктирная кривая на Рис. 2.2.2). В силу непрерывности полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным.

Цель рассказа показать в чем суть понятия "сигнал", какие распространённые сигналы существуют и какие у них общие характеристики.

Что такое сигнал? На этот вопрос даже маленький ребёнок скажет, что это "такая штука, с помощью которой можно что-нибудь сообщить". Например, с помощью зеркала и солнца можно передавать сигналы на расстояние прямой видимости. На кораблях, сигналы когда-то передавали с помощью флажков-семафоров. Занимались этим специально обученые сигнальщики. Таким образом с помощью таких флажков передавалась информация. Вот как можно передать слово "сигнал":

В природе существует огромное множество сигналов. Да по сути что угодно может быть сигналом: оставленная на столе записка, какой-нибудь звук -- могут служить сигналом к началу определённого действия.

Ладно, с такими сигналами всё понятно поэтому перейду к электрическим сигналам, которых в природе не меньше чем любых других. Но их хотя бы можно как-то условно разбить на группы: треугольный, синусоидальный, прямоугольный, пилообразный, одиночный импульс и т.д. Все эти сигналы названы так за то, как они выглядят, если их изобразить их на графике.

Сигналы могут быть использованы как метроном для отсчета тактов (в качестве тактирующего сигнала), для отсчета времени, в качестве управляющих импульсов, для управления двигателями или для тестирования оборудования и передачи информации.

Характеристики эл. сигналов

В некотором смысле электрический сигнал -- это график, отражающий изменение напряжения или тока с течением времени. Что по-русски означает: если взять карандаш и по оси Х отметить время, а по Y напряжение или ток, и отметить точками соответствующие значения напряжения в конкретные моменты времени, то итоговое изображение будет показывать форму сигнала:

Электрических сигналов очень много, но их можно разбить на две большие группы:

  • Однонаправленные
  • Двунаправленные

Т.е. в однонаправленных ток течет в одну сторону (либо не течет вообще), а в двунаправленных ток является переменным и протекает то "туда", то "сюда".

Все сигналы, независимо от типа, обладают следующими характеристиками:

  • Период -- промежуток времени, через который сигнал начинает повторять себя. Обозначается чаще всего T
  • Частота -- обозначает сколько раз сигнал повториться за 1 секунду. Измеряется в герцах. К примеру 1Гц = 1 повторение в секунду. Частота является обратным значением периода ( ƒ = 1/T )
  • Амплитуда -- измеряется в вольтах или амперах (в зависимости от того какой сигнал: ток или напряжение). Амплитуда обозначает "силу" сигнала. Как сильно отклоняется график сигнала от оси Х.

Виды сигналов

Синусоида


Думаю, что представлять функцию, чей график на картинке выше нет смысла - это хорошо тебе известная sin(x). Её период равен 360 o или 2pi радиан (2pi радиан =360 o).

А если разделить поделить 1 сек на период T, то ты узнаешь сколько периодов укалдывается в 1 сек или, другими словами, как часто период повторяется. То есть ты определишь частоту сигнала! Кстати, она указывается в герцах. 1 Гц = 1 сек / 1 повтор в сек

Частота и период обратны друг другу. Чем длинней период, тем меньше частота и наоборот. Связь между частотой и периодом выражается простыми соотношениями:


Сигналы, которые по форме напоминают прямоугольники, так и называют "прямоугольные сигналы". Их условно можно разделить на просто прямоугольне сигналы и меандры. Меандр - это прямоугольный сигнал, у которого длительность импульса и паузы равны. А если сложить длительность паузы и импульса, то получим период меандра.

Обычный прямоугольный сигнал отличается от меандра тем, что имеет разную длительность импульса и паузы (отсутствие импульса). Смотри картинку ниже -- она скажет лучше тысячи слов.


Кстати, для прямоугольных сигналов существует еще два термина, которые следует знать. Они обратны друг другу (как период и частота). Это скажность и коээффициент заполнения. Скажность (S)равняется отношению периода к длительности импульса и наоборот для коэфф. заполнения.

Таким образом меандр - это прямоугольный сигнал со скважностью равной 2. Так как у него период в два раза больше длительности импульса.

S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса.

Кстати, на графиках выше показаны идеальные прямоугольные сигналы. В жизни они выглядят слегка иначе, так как ни в одном устройстве сигнал не может измениться абсолютно мгновенно от 0 до какого-то значения и обратно спуститься до нуля.

Если подняться на гору, а затем сразу спуститься и записать изменение высоты нашего положения на графике, то получим треугольный сигнал. Груое сравнение, но правдивое. В треугольный сигналах напряжение (ток) сначала возрастает, а затем тут же начинает уменьшаться. И для классического треугольного сигнала время возрастания равно времени убывания (и равно половине периода).

Если же у такого сигнала время возрастания меньше или больше времени убывания, то такие сигналы уже называют пилообразными. И о них ниже.


Пилообразный сигнал

Как я уже писал выше, несимметричный треугольный сигнал называется пилообразным. Все эти названи условны и нужны просто для удобства.