Интернет Windows Android

Электронный компас купить. Выбираем компас для охоты: обзор разновидностей и лучших моделей

В связи с широким распространением мобильной платформы android и gps чипов в составе конечных продуктов в частности, я заинтересовался идеей работы цифрового компаса, вокруг которого сейчас возникает так много вопросов.

Итак, рассматриваемый нами объект представляет собой компас, в основу которого положен принцип построения на определении координат, с использованием спутниковых навигационных систем. Однако в практике встречаются случаи, когда компас имеет в своем составе в качестве приемника блок магниторезисторов(принцип изменения сопротивления от положения объекта в абсолютном пространстве) или элементов Холла. Элементы Холла же строятся на основе микромеханических систем, высокочувствительных к изменению магнитного поля в конкретном случае изменение распределения зарядов на кремниевой пластине под влиянием магнитного поля Земли. Приборы на магниторезисторах и элементах Холла олицетворяют собой компас в его классическом виде, как автономный измерительный инструмент, в отличие от систем «собирательного» типа, входная информация для которых поступает непосредственно в виде спутникового сигнала. В итоге системы, завязанные на внешнем источнике информации в сущности являются приборами с индикацией путевого угла в виде компаса.

Так как на практике мы имеем дело чаще всего с определением местоположения и направления посредством именно навигационных систем, примером тому хотя бы android с его приложением google maps, далее приведится принцип работы алгоритма именно такого случая использования:
1. По сигналам со спутников снимаем показания координат приёмника системы спутниковой навигации (и, соответственно, объекта)
2. Засекаем момент времени, в который было сделано определение координат.
3. Выжидаем некоторый интервал времени, достаточно короткий для более качественных результатов.
4. Повторно определяется местоположение объекта.
5. Решается простейшая навигационная задача вычисления вектора скорости движения из полученных координат двух точек и размера временного интервала, после чего, зная вектор, мы с легкостью получаем:
а) направление движения
б) скорость движения
6. Осуществляется переход к шагу 2.

Как видим, работа алгоритма обеспечивается циклично и отправной точкой для начала следующего вектора будет служить конец направляющего вектора за последний временной интервал.
Недостатки этого метода, в применении цифрового компасирования:
если объект неподвижен в абсолютном пространстве, направление движения узнать не получится, точки фиксирования координат совпадают в данном случае.
Как исключение достаточно большие объекты (например, крупные морские суда), где возможно установить 2 приёмника (например, на носу и корме). Таким образом, координаты двух точек можно получить сразу, даже если объект неподвижен, и перейти к пункту 5.
Так же надо брать во внимание точность определения координат спутниковыми системами позиционирования и её влияние на тихоходные объекты, вследствие разброса ошибок определения местоположения.

Каждый, кто пробовал ставить на своего робота электронный компас задавался таким вопросом: а как, собственно, получить из этого прибора некую виртуальную стрелку, которая бы показывала на север? Если мы подключим к Ардуино самый популярный датчик HMC5883L, то получим поток чисел, которые ведут себя странным образом при его вращении. Что делать с этими данным? Попробуем разобраться, ведь полноценная навигация робота без компаса невозможна.
Во первых, устройство, которое часто называют компасом на самом деле является магнитометром. Магнитометр — это прибор, который измеряет напряженность магнитного поля. Все современные электронные магнитометры изготавливаются по технологии МЭМС и позволяют проводить измерения сразу по трем перпендикулярным осям. Так вот тот поток чисел, которые выдает прибор — это на самом деле проекции магнитного поля на три оси в системе координат магнитометра. Такой же формат данных имеют и другие устройства, используемые для позиционирования и навигации: акселерометр и гиротахометр (он же гироскоп). На рисунке изображен простой случай, когда компас расположен горизонтально поверхности земли на экваторе. Красной стрелкой отмечено направление к северному полюсу. Пунктиром отмечены проекции этой стрелки на соответствующие оси. Казалось бы, вот оно! Катет равен катету на тангенс противолежащего угла. Для того чтобы получить угол направления придется взять арктангенс отношения катетов: H = atan(X/Y) Если мы проведем эти несложные вычисления, мы действительно получим какой-то результат. Жаль только, что мы всё еще не получим верный ответ, ведь мы не учли кучу факторов:

  1. Смещение и искажение вектора магнитного поля Земли, вследствие внешних воздействий.
  2. Влияние тангажа и крена на показания компаса.
  3. Разница между географическим и магнитным полюсами — магнитное склонение.
В этой статье мы займемся изучением этих проблем и узнаем способы их решения. Но для начала посмотрим на показания магнитометра своими глазами. Для этого нам потребуется их как-то визуализировать.

1. Визуализация показаний магнитометра

Как известно, одна картинка лучше тысячи слов. Поэтому, для большей наглядности, воспользуемся 3D-редактором для визуализации показаний магнитометра. Для этих целей, можно использовать SketchUp с плагином «cloud» (http://rhin.crai.archi.fr/rld/plugin_details.php?id=678) Указанный плагин позволяет загружать в SketchUp массивы точек из файла вида: 212 -321 -515 211 -320 -515 209 -318 -514 213 -319 -516 Разделителем может быть символ табуляции, пробел, точка с запятой и т.п. Всё это указывается в настройках плагина. Там же можно попросить склеить все точки треугольниками, что в нашем случае не требуется. Самый простой способ сохранить показания магнитометра — передавать их через COM-порт на персональный компьютер в монитор последовательного порта, с последующим сохранением их в текстовый файл. Второй способ — подключить к Ардуино SD карту и записывать данные магнитометра в файл на SD карте. Разобравшись с записью данных и с импортом их в SketchUp, попробуем теперь провести эксперимент. Будем вращать магнитометр вокруг оси Z, а управляющая программа в это время будет записывать показания датчика каждые 100 мс. Всего будет записано 500 точек. Результат этого эксперимента приведен ниже:
Что можно сказать, глядя на этот рисунок? Во-первых, видно, что ось Z действительно была зафиксирована — все точки расположены, более или менее, в плоскости XY. Во-вторых, плоскость XY немного наклонена, что может быть вызвано либо наклоном моего стола, либо наклоном магнитного поля Земли 🙂 Теперь взглянем на эту же картину сверху:
Первое, что бросается в глаза — центр координат находится совсем не в центре очерченного круга! Скорее всего, измеряемое магнитное поле чем-то «сдвинуто» в сторону. Причем это «что-то» имеет напряженность, выше оной у естественного поля Земли. Второе наблюдение — круг немного вытянут в высоту, что указывает уже на более серьезные проблемы, о которых мы поговорим ниже. А что получится, если вращать компас вокруг всех осей одновременно? Правильно, получится не круг, а сфера (точнее сфероид). Вот такая сфера получилась у меня:
Дополнительно к основным 500 точкам сферы, добавлены еще три массива, по 500 точек в каждом. Каждая из добавленных групп точек отвечает за вращение магнитометра вокруг фиксированной оси. Так, нижний круг получен вращением прибора вокруг оси Z. Круг справа — вращением вокруг оси Y. Наконец, плотное кольцо точек слева отвечает за вращение магнитометра вокруг оси X. Почему эти круги не опоясывают шар по экватору, читаем ниже.

2. Магнитное наклонение

На самом деле, последний рисунок может показаться немного странным. Почему будучи в горизонтальном состоянии, датчик показывает почти максимальное значение по оси Z?? Ситуация повторяется если мы наклоним прибор, например, осью X вниз — опять получим максимальное значение (левый круг). Получается, что на датчик постоянно действует поле направленное сквозь датчик вниз к поверхности земли! Ничего необычного в этом на самом деле нет. Эта особенность магнитного поля земли называется магнитным наклонением . На экваторе поле направлено параллельно земле. В южном полушарии — вверх от земли под некоторым углом. А в северном полушарии, как мы уже наблюдали — вниз. Смотрим картинку.
Магнитное наклонение никак не помешает нам пользоваться компасом, поэтому не будем о нем особо задумываться, а просто примем к сведению это интересный факт. Теперь же перейдем, непосредственно к проблемам.

2.1. Искажения магнитного поля: Hard & Soft Iron

В зарубежной литературе, искажения магнитного поля принято делить на две группы: Hard Iron и Soft Iron. Ниже приведена картинка, иллюстрирующая суть этих искажений.
Hard Iron Даю справку. Интенсивность магнитного поля земли сильно зависит от земных координат, в которых оно измеряется. Например, в Кейп Тауне (Южная Африка) поле составляет около 0.256 Гс (Гаусс), а в Нью-Йорке в два раза больше — 0.52 Гс. В целом по планете, интенсивность магнитного поля варьируется в диапазоне от 0.25 Гс до 0.65 Гс. Для сравнения, поле обычного магнитика на холодильник составляет 50 Гс, — это в сто раз больше чем магнитное поле в Нью Йорке!! Понятно, что чуткий магнитометр может легко запутаться, если рядом с ним возникнет один из таких магнитов. На квадрокоптере, конечно, таких магнитиков нет, но зато есть куда более мощные редкоземельные магниты вентильных двигателей, а еще электронные цепи контроллера, провода питания и аккумуляторная батарея. Такие источники паразитного магнитного поля называют Hard Iron. Воздействуя на магнитометр, они придают некоторое смещение измеряемым значениям. Посмотрим, имеются ли Hard Iron искажения у нашей сферы. Проекция точек сферы на плоскость XY, выглядит следующим образом:
Видно, что облако точек имеет некоторое заметное смещение по оси Y влево. По оси Z смещение практически отсутствует. Ликвидировать такое искажение очень просто: достаточно увеличить или уменьшить получаемые от прибора значения на величину смещения. Например, калибровка Hard Iron для оси Y будет иметь вид: Ycal_hard = Y — Ybias где Ycal_hard — калиброванное значение; Y — исходное значение; Ybias — величина смещения. Чтобы вычислить Ybias нам потребуется зафиксировать максимальное и минимальное значение Y, а затем воспользоваться простым выражением: Ybias = (Ymin-Ymax)/2 — Ymin где Ybias — искомая величина смещения; Ymin — минимальное значение оси Y; Ymax — максимальное значение оси Y. Soft Iron В отличие от Hard Iron, искажение типа Soft носит куда более коварный характер. Опять же, проследим этот вид воздействия на собранных ранее данных. Для этого, обратим внимание на то, что шар на картинке сверху, и не шар вовсе. Его проекция на ось YZ немного сплющена сверху, и слегка повернута против часовой стрелки. Вызваны эти искажения, наличием ферромагнитных материалов рядом с датчиком. Таким материалом является металлическая рама квадрокоптера, корпус двигателя, проводка, или даже металлические болты крепления. Исправить ситуацию со сплющенностью поможет умножение показаний датчика на некоторый множитель: Ycal_soft = Y * Yscale где Ycal_hard — калиброванное значение; Y — исходное значение; Yscale — коэффициент масштабирования. Для того чтобы найти все коэффициенты (для X,Y и Z) необходимо выявить ось с наибольшей разностью между максимальным и минимальным значением, и затем воспользоваться формулой: Yscale = (Amax-Amin)/(Ymax-Ymin) где Yscale — искомый коэффициент искажения по оси Y; Amax — максимальное значение на некоторой оси; Amin — минимальное значение на некоторой оси; Ymax — максимальное значение на оси Y; Ymin — минимальное значение на оси Y. Другая проблема, из-за которой сфера оказалась повернутой, устраняется чуть сложнее. Однако, вклад такого искажения в общую ошибку измерения достаточно мал, и мы не будем подробно расписывать способ его «ручного» нивелирования.

2.2. Автоматическая калибровка

Надо сказать, получение вручную точных минимальных и максимальных показаний магнитометра задача не из простых. Для этой процедуры, как минимум, потребуется специальный стенд, в котором можно фиксировать одну из осей прибора. Гораздо проще воспользоваться автоматическим алгоритмом калибровки. Суть этого метода состоит в аппроксимации облака полученных точек элипсоидом. Другими словами, мы подбираем параметры элипсоида таким образом, чтобы он максимально точно совпадал с нашим облаком точек, построенных на основе показаний магнитометра. Из подобранных таким образом параметров, мы сможем добыть величину смещения, коэффициенты масштаба и коэффициенты для ортогонализации осей. В интернете можно найти несколько программ, пригодных для этого. Например, MagCal, или еще одна — Magneto. В отличие от MagCal, в Magneto рассчитанные параметры выводятся в готовом к использованию виде, без необходимости дополнительных преобразований. Именно этой программой мы и воспользуемся. Главная и единственная форма программы выглядит следующим образом:
В поле «Raw magnetic measurements» выбираем файл с исходными данными. В поле «Norm of Magnetic or Gravitational field» вводим величину магнитного поля Земли в точке нашей дислокации. Учитывая, что этот параметр никак не влияет на угол отклонения стрелки нашего виртуального компаса, я поставил значение 1090, что соответствует значению 1 Гаусс. Затем жмем кнопку Calibrate и получаем:
  1. значения смещения по всем трем осям: Combined bias (b);
  2. и матрицу масштаба и ортогонализации: Correction for combined scale factors, misalignments and soft iron (A-1).
С помощью волшебной матрицы мы ликвидируем сплющенность нашего облака и устраним его легкое вращение. Общая формула калибровки выглядит следующим образом: Vcal = A-1 * (V — Vbias) где Vcal — вектор калиброванных значение магнитометра для трех осей; A-1 — матрица масштаба и ортогонализации; Vbias — вектор смещения по трем осям.

3. Влияние наклона магнитометра на вычисляемое направление

На очереди проблема номер два. В начале статьи мы уже попробовали вычислить угол между севером и стрелкой компаса. Для этого годится простая формула: H = atan(Y/X) где H — угол отклонения стрелки компаса от северного направления; X,Y — калиброванные значения магнитометра. Представим теперь, что мы фиксируем ось X строго по направлению к северу, и начинаем вращать датчик вокруг этой оси (придаем крен). Получается, что проекция поля на ось X остается неизменной, а вот проекция на Y меняется. Согласно формуле, стрелка компаса будет показывать либо на северо-запад, либо на северо-восток, в зависимости от того, в какую сторону делаем крен. Это и есть, заявленная в начале статьи, вторая проблема электронного компаса. Решить проблему поможет геометрия. Нам нужно всего лишь повернуть магнитный вектор в систему координат, заданную инклинометром. Для этого, поочередно перемножим две матрицы косинусов на вектор: Vcal2 = Ry*Rx*Vcal где Vcal — магнитный вектор, очищенный от Hard и Soft искажений; Rx и Ry — матрицы поворота вокруг осей X и Y; Vcal2 — магнитный вектор, очищенный от влияния крена и тангажа. Пригодная для программы контроллера формула будет иметь вид: Xcal2 = Xcal*cos(pitch) + Ycal*sin(roll)*sin(pitch) + Zcal*cos(roll)*sin(pitch) Ycal2 = Ycal*cos(roll) — Zcal*sin(roll) H = atan2(-Ycal2, Xcal2) где roll и pitch — наклоны вокруг осей X и Y; Xcal,Ycal,Zcal — вектор магнитометра (Vcal); Ycal2, Ycal2 — калиброванные значения магнитометра (Zcal2 не считаем — он нам не пригодится); H — угол между севером и стрелкой компаса. (О том, кто такой atan2 можно узнать тут: http://en.wikipedia.org/wiki/Atan2)

3. Разница между географическим и магнитным полюсом

После того как мы получили более или менее точный угол отклонения стрелки компаса от северного направления, пришло время устранить еще одну проблему. Дело в том, что магнитный и географический полюсы на нашей планете, сильно различаются, в зависимости от того, где мы производим измерение. Другими словами, «север» на который показывает ваш походный компас, совсем не тот север где льды и,белые медведи. Для нивелирования этих различий, к показаниям датчика необходимо прибавить (или вычесть) определенный угол, называемый магнитным склонением. Например, в Екатеринбурге магнитное склонение имеет величину +14 градусов, а значит измеренные показания магнитометра следует уменьшить на эти же 14 градусов. Для того чтобы выяснить магнитное склонение в ваших координатах, можно воспользоваться специальным ресурсом: http://magnetic-declination.com/

Заключение

В заключении несколько советов по навигации с помощью магнитометра.
  1. Калибровка должна проводиться именно в тех условиях, в которых беспилотник будет совершать реальный полет.
  2. Магнитометр лучше выносить из корпуса робота на штанге. Так на него будет влиять меньше шумов.
  3. Для вычисления направления лучше использовать связку компас + гироскоп. При этом их показания смешиваются по определенному правилу (data fusion).
  4. Если речь идет о летательном аппарате с большой курсовой скоростью, рекомендуется использовать связку компас + гироскоп + GPS.

Добрый день. В мобильные телефоны создатели довольно часто встраивают компас. Но, что это, и для чего он нужен, не все пользователи смартфонов имеют представление. Поэтому, в данной статье, мы постараемся подробнее рассмотреть эту программу телефона, и, если её в вашем устройстве нет, рассмотрим, как её скачать.

Какие бывают компасы

Что такое компас, мы все помним из курса школьной географии. Но, давайте более глубоко копнем этот вопрос. Люди придумали различные приборы, которые позволяют понять, где находятся полюса. Главное в этом деле понять, где находится север. Далее, зная расположение северного полюса, можно узнать, где находятся остальные направления света. Зачем нам это нужно? Чтобы не заблудиться на местности. К примеру, в лесу, в поле, или находясь на яхте в море.

Например, вы в курсе, как определить полюса в лесу, имея в подручных средствах обычную иголку? Нужно аккуратно положить маленькую иголочку на водную плёнку (на водной глади есть тончайшая плёнка, именно по ней бегают долгоножки), или можно просто положить её на маленький листик растения (или небольшой бумаги).

Сам же лист аккуратно положить на воду в фарфоровой (пластиковой) тарелке (или в луже, если вы в лесу). Итак, один из концов иголки примет направление на север, другой, на юг. Всё очень просто. К чему я это сказал? Данный метод очень может вам помочь, если вы находитесь в незнакомой местности и не знаете направления сторон. У вас нет компаса, но, есть небольшая лужа и обычная иголка! Вам останется только понять, какой именно из концов иголки показывает на север!

Виды компасов

Магнитный – всем знакомый компас из школьного курса. Суть его сводится к определению магнитного северного полюса по магнитному полю. Далее, исходя из шкалы прибора, без труда определяются остальные части света.

Есть очень красивые компасы, носить которые одно удовольствие. Например, купить красивый компас Eyeskey Professional

вы можете здесь . Доставка бесплатна, вариантов много. Тот, что на картинке, я подарил другу на день рождения. Он заядлый рыбак. От компаса он пришёл в восторг.

Электромагнитный

Суть его работы в создании поля из-за движения прибора в пространстве. Его устанавливают в различные транспортные средства, вроде кораблей, самолетов, и прочих механизмов. Тут есть одно условие, чтобы компас начал функционировать, необходимо движение этого механизма. Без движения, не появится электричество, и его величина не покажет нужных данных на приборе.

Цифровой компас

Его действие похоже на разновидность обычного классического. Различие в том, что в нем нет стрелки, но есть датчик, использующий магнитное поле. Данные с датчика идут на циферблат. В подобных компасах часто присутствуют прочие возможности. Довольно часто, такие приборы могут замерять шаги, давление. Работать он может как барометр, часы и прочее. Недостаток – окончание заряда батарейки.

Например, тот, что на скриншоте, является также и барометром. Подробнее о нём по ссылке…

Радиокомпас

Для этой разновидности компасов нет нужды в магнитном поле. В связи с тем, что данные поступают прямо со специальных вышек. Раньше, подобный механизм довольно часто применяли в самолётах. Но, в последнее время, от них всё чаще отказываются, так как довольно часты стали различия в информации из-за искажения радиоволн.

Спутниковый

Как понятно из названия, данные он получает со специальных спутников. Что интересно, этот вид компаса, показывает направление не на магнитные полюса, а на реальные, географические. Другими словами, он самый точный. Но, есть и недостатки. При плохой погоде, информация может искажаться. Также, информация может быть не точной, если человек находится под землёй.

Именно данный вид компасов, совместно с цифровыми, встраивают в телефоны и различные планшеты. Сигналы они принимают прямо со спутников. Сейчас в большинстве смартфонов, данный вид компаса встроен по умолчанию. Другими словами, скачивать его с различных сервисов нет нужды. Достаточно войти в настройки, и активировать данную функцию.

Также, этот компас часто неразрывно связан с навигатором в телефоне. Если у вас в сотовом присутствует навигатор, то, разумеется, есть и компас.

Если же в вашем телефоне отсутствует данная программа, скачать компас бесплатно, можно, с play.google.com . На снимке вы видите Compass Galaxy.

Если вас данная модель не устраивает, на этой же странице есть другие варианты телефонного компаса. Выбирайте тот, который вам больше приглянулся.

Важно: — Я не знаю, какая у вас модель телефона. Но, чтобы работал компас в телефоне, необходимо, чтобы в вашем гаджете была установлена функция магнитного датчика. Если её нет, то, необходимо подключится к геолокации GPS. Или, другими словами, подключить магнитный гироскоп. Разумеется, если это позволяет модель вашего телефона, о чем вы можете узнать из его инструкции. Успехов!

Когда выбираешься за город, то привычная вещь вроде смартфона уже не помогает. Необходимо надежное устройство, помогающее сориентироваться в пространстве (а порой и во времени), а также получить другую важную информацию. Причем устройство должно быть максимально легким, компактным и, раз уж на то пошло, многофункциональным. Этот цифровой компас именно такой. С ним (и с заряженными батарейками в запасе) не заблудишься, точно определишь точку, в которой находишься, а значит поймешь, куда двигаться дальше.

Устройство весит значительно меньше 100 грамм, удобно и легко лежит в руке, имеет несколько встроенных датчиков, жидкокристаллический дисплей и возможность сохранять историю последних зафиксированных данных (до 8 позиций). Удобный шнурок для подвешивания на шею и светодиодный элемент для подсветки в темноте дополняют базовые возможности до комфортного уровня.

Встроенные функции:

  1. часы;
  2. календарь;
  3. термометр;
  4. барометр;
  5. высотомер;
  6. компас;
  7. погодный датчик.

А всё вместе дает возможность не только определять координаты своего местонахождения, но и прокладывать верный курс до точки назначения.

Часы и календарь

С этими понятными даже детям счетчиками всё просто. Однажды устанавливаете верные дату и время и отслеживаете текущий момент. Можно выбрать 12- или 24-часовой форматы отображения времени. Нажатие кнопки SET позволяет переходить от времени к дате. А долгое нажатие кнопки SET позволяет войти в режим настроек, в котором можно установить дату/время, а также выбрать привычные единицы измерения.

Термометр

Температура может показываться как в градусах Цельсия, так и в градусах Фаренгейта. Есть также несколько вариантов определения состояния погоды на ближайшее время: ясно, преимущественно облачно, облачно и осадки. Информация обновляется каждые 30 секунд.

Барометр

Значение атмосферного давления, как и время с датой и текущей температурой, отображается на дисплее в стандартном режиме. Информация обновляется раз в 30 секунд. Если нужны точные данные, необходимо нажать и удерживать кнопки SET и ALTI. Атмосферное давление может отображаться как в миллиметрах ртутного столба, так и в Гекто-Паскалях.

Высотомер

Нажатие кнопки ALTI переводит в режим измерения абсолютной высоты (ABS). Данные обновляются каждые 5 секунд. Удержание кнопки ALTI переводит в режим измерения сравнительной высоты (REL), показания при этом сбрасываются на 0. Высоту можно замерять как в метрах, так и в футах.

Компас

Нажатие на кнопку COMP позволяет перейти в режим компаса. Удержание той же кнопки переводит в режим его проверки. О том, как это делать, подробно рассказано в сопроводительной инструкции. При измерении направления следует держать компас вдали от воздействия магнитных полей. Искажения могут происходить из-за других магнитов поблизости, а также из-за железных и стальных предметов.

В общем, с таким ручным электронным помощником вы не потеряетесь. Еще раз напомним про запас батареек. Здесь используются "мизинчиковые".

Подарок путешественнику

Такую полезную вещь, конечно, оценит тот, кто любит надолго уходить в поход, особенно в гористой местности. А еще ему могут сгодиться шагомер и мультитул 4 в 1 . В мультитуле есть мощный фонарь, лампа-ночник, вентилятор и музыкальное устройство (воспроизведение MP3-файлов и радио). Во время стоянок и в темноте очень выручает.

Характеристики

  • 7 в 1: часы, календарь, термометр, погодный датчик, компас, высотомер, барометр;
  • инструкция прилагается;
  • ЖК-дисплей;
  • подсветка светодиодным сигналом в течение 5 секунд;
  • сохранение и просмотр истории предыдущих значений;
  • размеры: 6.5 х 2.5 х 10 см;
  • вес: 85 г;
  • период обновления данных: 30 секунд;
  • температурный диапазон: от -10 °C до 50 °C (14-122 °F);
  • диапазон высоты: от -305 м до 9 144 м (-1 000-30 000 футов);
  • диапазон атмосферного давления: от 225 мм рт ст до 788 мм рт ст (301-1 051 гПа);
  • работает от 2 ААА ("мизинчиковых") батареек (нет в комплекте);
  • есть шнурок;
  • бренд: LeFutur;
  • упаковка: фирменная коробка;
  • размеры коробки: 7 х 11 х 3 см.

До недавнего времени в геодезии в основном использовались компасы и буссоли, где чувствительным элементом является намагниченная игла, вращающаяся на стержне и используемая в разных модификациях этих приборов уже несколько тысячелетий. При ориентировании игла принимает такое положение, что ее плоскость становится параллельна линиям магнитного поля, проходящим в данном месте. Если игла имеет две степени свободы, т. е. может вращаться в горизонтальной и вертикальной плоскостях, то направление, в котором указывает игла, будет показывать и склонение, и уклон локального геомагнитного поля. Во многих приборах, для того чтобы игла точно показывала направление на северный магнитный полюс, ее обычно уравновешивают специально под особенности магнитного поля того региона, в котором компас будет эксплуатироваться.

Иногда используют компасы с глобальным балансированием, которые могут использоваться по всему миру. Для демпфирования колебаний иглы во время движения компас заполняется жидкостью (смесь воды с алкоголем или очищенным маслом). Показания таких приборов отягощены ошибками из-за влияния внешних воздействий, таких как вибрация, наклон, ускорение, а также внешние магнитные поля. Традиционные компасы и буссоли сложно приспособить к цифровому считыванию, а следовательно, сложно использовать в комплексе с новейшими геодезическими приборами .

В современных электронных компасах в качестве чувствительного элемента используются магнитометры , которые являются, как и компас, аналоговыми приборами и измеряют интенсивность одной или нескольких составляющих магнитного поля Земли в той точке, где он находится. Сигналы с выхода магнитометра преобразуются в цифровую форму и могут быть использованы для дальнейшей обработки микропроцессором. В современных приборах в основном используются магнитометры, в которых используются магниторезистивные и магнитоиндуктивные датчики, датчики на основе эффекта Холла, а также датчики, изготовленные по технологии «fluxgate». Для ориентирования обычно используется электронный компас, который имеет два магнитометра, установленных в горизонтальной плоскости под прямым углом друг к другу, чтобы измерять одну из компонент магнитного поля В х или В y , соответственно по оси х или по оси у. Угол между осью х и магнитным меридианом будет равен:

ψ = arctg(B y / Bx). (7.1)

Современные магнетометры имеют небольшие размеры и встраиваются в интегральные микросхемы.

В некоторые геодезические приборы встраиваются анизотропные магниторезистивные (AMP) датчики, представляющие собой специальные резисторы, сделанные из тонкой пермаллоевой пленки, вектор намагничивания которой при попадании во внешнее магнитное поле начинает вращаться или изменять угол, меняя сопротивление пленки. При измерениях такую пленку помещают в мост Уитсона и оценивают изменение напряжения, вызванное изменением сопротивления пленки, по которому оценивают силу воздействия магнитного поля. Магниторезистивные датчики обеспечивают точность, превышающую один градус, и могут иметь одну, две или три оси, и их встраивают в электронные компасы.

Необходимо отметить, что многие спутниковые приемники имеют аналогичные встроенные электронные компасы. В спутниковых приемниках обычно используют двухосевой компас, а в некоторых случаях - трехосевые датчики направлений, которые позволяют получать достаточно точные направления даже в случае небольшого наклона. В том случае, когда спутниковый приемник движется со скоростью свыше 10 км/час, он по спутниковым наблюдениям может определять направление своего движения с ошибкой менее одного градуса. При меньших скоростях движения GPS-приемник в комплекте с одной антенной не способен определить направление движения. Поэтому приемник настраивают так, чтобы при достижении им определенной скорости (например, 5 или 10 км в час), он переключался бы с функции направления по компасу на функцию направления, полученного из спутниковых наблюдений, выполненных самим GPS-приемником, а при уменьшении скорости движения приемник возвращался к направлению компаса.

Чтобы спутниковый приемник мог вычислять как географический (истинный), так и магнитный азимуты движения, в приемник встраивают программное обеспечение, которое содержит параметры модели основного геомагнитного поля Земли. Приемник непрерывно обновляет информацию о направлении на объект по мере того, как пользователь двигается произвольным путем до объекта.

Магнитоиндуктивные датчики направления появились сравнительно недавно - первый патент на них был выдан в 1989 году. Принцип его работы основан на том, что в генераторе колебаний используется катушка, индуктивность которой меняется под воздействием изменения окружающего магнитного поля. Изменение индуктивности катушки вызывает изменение частоты генератора. Таким образом, магнитометр такого типа измеряет магнитное поле по его влиянию на индуктивность катушки проволоки или соленоида.

Для определения направления на северный магнитный полюс (в горизонтальной плоскости) два таких датчика, установленных перпендикулярно друг другу, закрепляют на карданном подвесе, чтобы они располагались в горизонтальной плоскости, а в трехосевом используется еще и креномер. Многие современные автомобильные компасы производятся на основе магнитоиндуктивных датчиков.