Интернет Windows Android

Для группировки выражений в системе maxima используются. Методичка работы с maxima

В системе Maxima имеется множество встроенных функций. Для каждой встроенной функции можно получить описание в документации, содержащейся в справочной системе. Вызвать справку можно с помощью функциональной клавиши F1. Также в Maxima есть специальная функция, которая выдает информацию из документации по конкретным словам. Сокращенная версия вызова этой функции: ?? name (Рис.12). Здесь?? - это имя оператора, и аргумент нужно отделять от него пробелом. Оператор?? выдает список тех разделов помощи и имен функций, которые содержат заданный текст, после чего предлагают ввести номер того раздела или описания той функции, которые требуется посмотреть:

Рис.12. Вызов справки по интересующей команде системы Maxima

Заметим, что в системе Maxima нет четкого разграничения между операторами и функциями. Более того,каждый оператор - это на самом деле функция.

Все функции и операторы Maxima работают не только с действительными, но и комплексными числами. Сами комплексные числа записываются в алгебраической форме, с мнимой единицей, обозначенной через %i; то есть в виде a+b*%i, где а и b - соответственно действительная и мнимая части числа.

Рассмотримсинтаксис базовых функций системы Maxima.

1. Арифметические операторы: + , -, *, /, -->. Пример:

3. Логические операторы: and, or, not. Пример:

4. Функция нахождения факториала числа: !

Факториал задан в наиболее общем виде и представляет собой, по сути, гамма-функцию (точнее, x! = gamma(x+1)), то есть определен на множестве всех комплексных чисел, кроме отрицательных целых. Факториал от натурального числа (и нуля) автоматически упрощается до натурального же числа.

5. Функция нахождения полуфакториала чила: !! (произведение всех четных (для четного операнда) или нечетных чисел, меньших либо равных данному).

6. Функция отрицания синтаксического равенства: # Запись a#b эквивалентна not a=b.Пример:

7. Функция нахождения модуля числа х: abs(x) Модуль определен для всех комплексных чисел. Пример:

8. Функция, возвращающая знак числа х: signum(x)

9. Функции, возвращающие наибольшее и наименьшее значения из заданных действительных чисел: max(x1,...,xn) и min(x1,...,xn).

10. Некоторые встроенные математические функции:

sqrt (x) Квадратный корень из x
acos (x) Арккосинус аргумента х
acosh (x) Гиперболический арккосинус аргумента х
acot (x) Арккотангенс аргумента х
acoth (x) Гиперболический арккотангенс аргумента х
acsc (x) Арккосеканс аргумента х
acsch (x) Гиперболический арккосеканс аргумента х
asec (x) Арксеканс аргумента х
asech (x) Гиперболический арксеканс аргумента х
asin (x) Арксинус аргумента х
asinh (x) Гиперболический арксинус аргумента х
atan (x) Арктангенс аргумента х
atanh (x) Гиперболический арктангенс аргумента х
cosh (x) Гиперболический косинус аргумента х
coth (x) Гиперболический котангенс аргумента х
csc (x) Косеканс аргумента х
csch (x) Гиперболический косеканс аргумента х
sec (x) Секанс аргумента х
sech (x) Гиперболический секанс аргумента х
sin (x) Синус аргумента х
sinh (x) Гиперболический синус аргумента х
tan (x) Тангенс аргумента х
tanh (x) Гиперболический тангенс аргумента х
log (x) Натуральный логарифм х
exp (x) Экспонента х

11. Функции для работы с матрицами:

determinant – нахождение определителя матрицы:

eigenvalues – нахождение собственных значений матрицы:

invert – получение обратной матрицы:

minor – определяет минор матрицы. Первый аргумент – матрица, второй и

третий – индексы строки и столбца соответственно:

rank – ранг матрицы:

submatrix – возвращает матрицу, полученную из исходной удалением

соответствующих строк и (или) столбцов. В качестве параметров следуют

номера удаляемых строк, исходная матрица, номера удаляемых столбцов.

transpose – транспонирование матрицы:

В языке системы Maxima заложены основные исполнимые операторы, которые есть в любом языке программирования. Рассмотрим их.

Операторы присваивания значений (именования выражений).

1. Оператор «:» (оператор задания значения переменной).

2.Оператор «:=» (оператор задания функции пользователя).

3.Расширенные варианты операторов присваивания и задания функции, обозначаемые соответственно через:: и::=.

Использование оператора задания функции пользователя значительно облегчает работу с ней, поскольку к ней можно обращаться по имени и легко и удобно вычислять значения функции в заданных точках.

Пример: найдем значение функции f (x,y )=cosx + siny в точке

Оператор цикла. Оператор цикла может задаваться несколькими способами. Способ задания зависит от того, известно ли заранее сколько раз необходимо выполнить тело цикла.

Пример: задание цикла для вывода значений переменной а в диапазоне от -3 до 10 с шагом 5:

Следующей важной возможностью системы Maxima являетсяработа со списками и массивами.

Для формирования списков используется команда makelist. Например, с помощью команды

мы сформировали список с именем x, состоящий из десяти элементов, значения которых находятся по формуле .

Для формирования массивов используется команда array. Например с помощью команды,

мы сформировали двумерный массив A, состоящий из 10 строк и 5 столбцов. Для заполнения массива элементами воспользуемся циклом с параметром. Например,

Для вывода элементов массива на экран можно воспользоваться командой:

Массив можно формировать и без предварительного объявления. В следующем примере мы сформировали одномерный массив x, состоящий из 5 элементов, значения которых вычисляются по формуле x(i )=sini

Неудобство работы с массивами заключается в том, что вывод значений элементов массива осуществляется в столбец. Гораздо удобнее, если значения массива (двумерного) выводятся в виде матрицы. Для этих целей можно воспользоваться командой genmatrix. Например, для формирования двумерного массива (матрицы) следует задать команду в следующем виде:

Выведем полученный массив:

6. Простейшие преобразования выражений.

По умолчанию в системе Maxima является активной функция автоупрощения, т.е. система старается упростить вводимое выражение сама без какой-либо команды.

Пример. Пусть требуется найти значение следующего числового выражения:

Зададим выражение по правилам языка системы Maxima.

Как видим, система в ответ вывела значение выражения, хотя мы не задали никакой команды.

Как же заставить систему вывести не результат, а само выражение? Для этого функцию упрощения надо отключить с помощью команды simp: false$. Тогда получим:

Для того чтобы активировать функцию упрощения, надо задать команду simp:true$. Функция автоупрощения может работать как с числовыми, так и с некоторыми не числовыми выражениями. Например,

При вводе мы можем обращаться к любой из предыдущих ячеек по ее имени, подставляя его в любые выражения. Кроме того, последняя ячейка вывода обозначается через %, а последняя ячейка ввода - через _. Это позволяет обращаться к последнему результату, не отвлекаясь на то, каков его номер. Но такими обращениями к ячейкам злоупотреблять не надо, поскольку при переоценивании всего документа или его отдельных ячеек ввода может произойти разногласие между номерами ячеек.

Пример. Найти значение выражения и увеличить полученный результат в 5 раз.

Желательно вместо имен ячеек использовать переменные и присваивать их имена любым выражениям. В этом случае в виде значения переменной может выступать любое математическое выражение.

Значения имен переменных сохраняются на протяжении всей работы с документом. Напомним, что если необходимо снять определение с переменной, то это можно сделать с помощью функции kill(name), где name - имя уничтожаемого выражения; причем это может быть как имя, назначенное вами, так и любая ячейка ввода или вывода. Точно так же можно очистить всю память и освободить все имена, введя команду kill(all) (или выбрать меню Махта->Очиститъ память (Clear Memory)). В этом случае очистятся в том числе и все ячейки ввода-вывода, и их нумерация опять начнется с единицы.

Функция автоупрощения далеко не всегда способна упростить выражение. В дополнение к ней имеется целый ряд команд, которые предназначены для работы с выражениями: рациональными и иррациональными. Рассмотрим некоторые из них.

rat (выражение) - преобразовывает рациональное выражение к канонической форме: раскрывает все скобки, затем приводит все к общему знаменателю, суммирует и сокращает; приводит все числа в конечной десятичной записи к рациональным. Каноническая форма автоматически «отменяется» в случае любых преобразований, не являющихся рациональными

ratsimp (выражение) - упрощает выражение за счет рациональных преобразований. Работает в том числе и «вглубь», то есть иррациональные части выражения не рассматриваются как атомарные, а упрощаются, в том числе, и все рациональные элементы внутри них

fullratsimp(выражение) - функция упрощения рационального выражения методом последовательного применения к переданному выражению функции ratsimp(). За счет этого функция работает несколько медленнее, чем ratsimp(), зато дает более надежный результат.

expand (выражение) - раскрывает скобки в выражении на всех уровнях вложенности. В отличии от функции ratexpand(), не приводит дроби-слагаемые к общему знаменателю.

radcan(выражение) - функция упрощения логарифмических, экспоненциальных функций и степенных с нецелыми рациональными показателями, то есть корней (радикалов).

Часто при попытке упрощения выражения в Maxima может происходить на самом деле только его усложнение. Увеличение результата может происходить из-за того, что неизвестно, какие значения могут принимать переменные, входящие в выражение. Чтобы этого избежать, следует накладывать ограничения на значения, которые может принимать переменная. Делается это с помощью функции assume(условие). Поэтому в некоторых случаях наилучшего результата можно добиться, комбинируя radcan() с ratsimp() или fullratsimp().

Maxima - еще одна программа для выполнения математических вычислений, символьных преобразований, а также построения разнообразных графиков. Сложные вычисления оформляются в виде отдельных процедур, которые затем могут быть использованы при решении других задач. Система Maxima распространяется под лицензией GPL и доступна как пользователям ОС Linux, так и пользователям MS Windows.

Для работы с данной системой в ОС Linux следует в окне shell набрать команду maxima или xmaxima для запуска ее графической оболочки. Другим удобным инструментом для работы с системой Maxima является программа texmacs . На панели инструментов этой программы располагается кнопка с изображением монитора, нажатиe на которую открывает меню выбора интерактивной сессии. Выбор пункта maxima позволит начать сеанс работы с этой программой.

При отображении результатов вычислений эта оболочка использует стандартные математические обозначения, в то время как xmaxima или maxima - только символы из таблицы ASCII-кодов.

При старте выводится некоторая информация о системе и "метка" (C1). Каждый ввод и вывод помечаются системой и затем могут быть использованы снова. Символ C (от command) используется для обозначения команд, введенных пользователем, а D (от display) - при выводе результатов вычислений.

Для инициализации процесса вычислений следует ввести команду, затем символ; (точка с запятой) и нажать клавишу Enter. Если не требуется вывод полученной информации на экран, то вместо точки с запятой используется символ $. Обратиться к результату последней команды можно с помощью символа %. Для повтора ранее введенной команды, скажем (C2), достаточно ввести два апострофа и затем метку требуемой команды, например, ""C2.

Система Maxima не обращает внимание на регистр введенных символов в именах встроенных констант и фунций. Запись sin(x) эквивалентна записи SIN(x), но при выводе результатов в текстовом режиме используются заглавные буквы. Регистр букв, однако, важен при использовании переменных, например, Maxima считает x и Xразными переменными.

Для стандартных математических констант используются следующие обозначения: %e (или %E) для основания натуральных логарифмов, %i (%I) для мнимой единицы (квадратный корень из числа -1) и %pi (%PI) для числа
.

Присваивание значения какой-либо переменной осуществляется с помощью знака : (двоеточие), а символ = (равно) используется при задании уравнений или подстановок.

(C1) x:2; (D1) 2 (C2) y:3; (D2) 3 (C3) x + y; (D3) 5

Функция kill аннулирует присвоенные ранее значения переменных. Параметр all этой функции приводит к удалению значения всех переменных, включая метки Ci и Di.

(C8) kill(x); (D8) DONE (C9) x + y; (D9) x + 3 (C10) kill(all); (D0) DONE (C1) x + y; (D1) y + x

Для завершения работы с системой применяется функция quit(); , а прерывание процесса вычислений осуществляется путем нажатия комбинации клавиш Ctrl+c (после чего следует ввести:q для возврата в обычный режим работы).

Справка о той или иной функции выводится по команде describe (имя функции). При работе в графической оболочке XMaxima, можно воспользоваться пунктом меню help. Процедура example (имя функции) демонстрирует примеры использования функции.

При вводе каждой команде и результату, как уже отмечалось выше, присваивается порядковый номер.

Используемый стиль обозначений позволяет при дальнейшей записи команд сослаться на ранее полученные результаты, например, таким образом (% o 1)*(% o 2) – результаты требуется перемножить.

Для последнего ответа в Maxima есть специальное обозначение%. А для последней команды _ (знак подчёркивания).

Пример : Вычислить значение функции в точках x = a , и вычислить .

Команда (%i1) была выполнена (появился результат %о1) и была определена функция . Поэтому следующие две команды (%i2) и (%i3) вызывали (хотя и по-разному) эту функцию, чтобы рассчитать значения в заданных точках. Из (%i4) видно, что ссылку на строку результата (%о2) можно писать и без скобок ().

Основные математические операции в Maxima обозначаются обычным образом: +, –, *, /. Возведение в степень для удобства предусмотрено записывать тремя разными способами ^, ^^, **. Знак присвоения – это двоеточие «: », команду для Maxima «а:2;» следует читать следующим образом: «переменной а присвоить число 2». В конце команды кроме точки с запятой «; » допустимо ставить знак доллара $. При наличии точки с запятой результат выводится на экран, при наличии доллара результат не выводится на экран, исключение составляют команды для вывода графиков, заканчивающиеся долларом, но выводящие на экран график.

3.1. Переменные в Максима

Переменные в Maxima могут хранить символы, аналитические выражения, определения функций, логические значения «true», «false», списки, уравнения, строки текста, заключенного в двойные кавычки, в составе которого имеются кириллические символы, и, конечно же, числа: целые, рациональные дроби, вещественные фиксированной точности и вещественные с плавающей точкой неограниченной точности типа %pi.

Из следующего примера видно, что Maxima вполне законченный математик, для неё переменная х и нечто – никому непонятный объект ″Петя″ – ничем не отличаются. Maxima

В этом примере Maxima разделила (″Петя″2–4)/(″Петя″–2) и получила ″Петя″+2. Затем из ″Петя″+2 Maxima отняла ″Петя″ и в итоге получила целое число 2.

3.2. Возможные ошибки вычислений

Из следующего примера следует, что в операциях с числами Maxima «ручается» только за 16 значащих цифр и «ничто компьютерное ей не чуждо», у неё тоже имеются чисто вычислительные проблемы (см. %о3) с округлением при вычислениях.

Дело в том, что в приведённых примерах Maxima производит вычисления не целыми числами, а с приближенными. Расчеты производятся не в десятичной системе и не путем формальной замены деления введением множителя 10 –5 . Деление производится реально в двоичной системе. Приближенные числа имеют стандартную длину, плавающую запятую. Результаты округляются так, чтобы оставались 16 значащих цифр.

В данном примере появившаяся неожиданная ″ добавка ″ незначительна и составляет всего 0,3*10 –21 .

В следующем примере она значительно больше. Но, как и в предыдущем случае, также является следствием технических возможностей компьютера при осуществлении арифметических операциях с плавающей запятой

За счет реального выполнения арифметических вычислений, результаты оказываются неточными: ответы %о3 и %о4 отличаются от нуля.

3.3. Записьуравнений

Если записанная команда содержит знак равенства, Maxima рассматривает её как уравнение, от левой и правой части которого можно отнять одну и ту же величину, и можно обе части уравнения умножить на одну и ту же величину, при умножении двух уравнений отдельно перемножаются их левые и правые части.

3.4. Неопределённая форма выражений

Выражения в Maxima могут иметь две формы: действующую и неопределённую . В тех случаях, когда выражение надо лишь отобразить, а не вычислить (неопределённая форма ) , перед ним следует поставить знак (одинарная кавычка). Например, мы пожелали отобразить то самое задание, которое мы увидели первым в окне XMaxima , поэтому скопируем текст задания, добавим кавычку, и вызовем интерпретатор. Получим

откуда видим, что первый пример в окне XMaxima посвящен вычислению представленного здесь интеграла.

Однако, указанный метод не сработает, если выражение имеет явное значение, например, выражение sin(π ) Maxima рассматривает как нуль и при наличии апострофа. Соответственно co s(2 π ) для Maxima в точности равен единице.

С другой стороны, чтобы принудительно заставить выражение вычислить, то есть перевести его в действующую форму, следует поставить одиночную кавычку два раза (применить оператор действующей формы – ′′ ).

3.5. Вызов справки

Трудно предусмотреть многообразие возможных вариантов записи команд с целью использования Maxima для расчета или преобразования выражений. В сложных случаях можно попытаться получить справку на английском языке.

Для вызова справки следует написать? topic и вызвать интерпретатор нажатием Shift +Enter , где topic – эта ключевое слов (тема) справки.

Команда?? topic вызывает поиск по всем темам справки, содержащим ключевое слово topic .

В следующем примере мы хотели спросить про знак факториала, но не поставили пробел после знака вопроса (ошиблись). Maxima ответила, что не существует точно такой, как в запросе, (exact match ) темы.

И посоветовала попытаться (Try ) вторично (??) спросить с целью получения не вполне точного ответа. О том, что ответ был неудовлетворителен, Maxima сообщила в виде false в строке ответа (%о1).

В следующем вопросе мы также ошиблись (опять не поставили пробел), но хотели спросить про функцию cos (x ), получилось непонятно для программы и поэтому вообще никакого ответа не получили.

В случае с факториалом (!) при вторичном запросе Maxima дала исчерпывающий ответ (который мы немного сократили)

В ответе Maxima сначала создала нумерованный список ответов (в данном случае у неё два номера 0 и 1), затем предложила ввести разделённые пробелом (space - separated ) номера разделов или указать все (all ) или никакие (none ) из них. После уточнения (а ), которое она поняла как (all ), Maxima напечатала справку по запрашиваемое теме "факториал".

3.6. Ввод числовой информации

Правила ввода чисел в Maxima точно такие, как и для многих других подобных программах. Целая и дробная часть десятичных дробей разделяются символом точка . Перед отрицательными числами ставится знак минус . Числитель и знаменатель обыкновенных дробей разделяются при помощи символа / (прямой слэш ).

Обратите внимание, что если в результате выполнения операции получается некоторое символьное выражение, а необходимо получить конкретное числовое значение в виде десятичной дроби, то решить эту задачу позволит применение опции numer . В частности, опция numer позволяет перейти от обыкновенных дробей к десятичным:

Здесь Maxima прежде всего действовала по умолчанию. Она сложила дроби 3/7 и 5/3 по правилам арифметики точно: нашла и привела дроби к общему знаменателю и сложила числители. В итоге она получила 44/21. Лишь после того, как мы попросили её получить численный ответ, она вывела приближенный, с точностью 16 знаков, численный ответ 2,095238095238095.

3.7. Возведение в степень и старшинство операций

Как уже отмечалось выше, обозначения арифметических операций в Maxima не отличаются от классического представления, используются те же математические знаки: + – * /. Но возведение в степень предусмотрено обозначать тремя способами: ^ , ^^ , **.

Извлечение квадратного корня производит функция sqrt(),извлечение корня степени n записывают как степень ^^(1/n ).

В Maxima определены стандартные операции – нахождение факториала числа, (например, 6! = 1 · 2 · 3 · 4 · 5 · 6 = 120) и нахождение двойного факториала (например, 6!! =2 · 4 · 6 = 48; 7! = 1 · 3 · 5 ·7 = 105).

Для увеличения приоритета операции при записи команд для Maxima используют круглые () скобки.

Как видно из приведённых результатов вычислений (%о13)–(%iо5), Maxima правильно понимает старшинство операций: сначалавыполнила возведение в степень и только потом операцию деления. Выполняя команду (%i13), она возвела в степень 1 и разделила результат на 3, но при выполнении команды (%i14) вычислила корень третьей степени, результат (%о15) равен произведению (%о13) и (%о14).

3.8. Константы

В Maxima для удобства вычислений есть ряд встроенных констант, самые распространенные из них показаны в следующей таблице (табл. 1):

Таблица 1

Названия констант и их обозначение в Maxima

Название

Обозначение

π (число Пифагора)

e (Эйлерово число)

Мнимая единица ()

+∞ (плюс бесконечность)

– ∞ (минус бесконечность)

minf

Истина

true

Ложь

false

Комплексная бесконечность

infinity

слева (в отношении пределов)

minus

справа (в отношении пределов)

plus

Золотое сечение ()

%phi

3.9. Переменные и выражения

Для хранения результатов промежуточных расчетов используются переменные. Заметим, что при вводе названий переменных, функций и констант важен регистр букв. Так, переменные x и X – это две разные переменные.

Присваивание значения переменной осуществляется с использованием символа : (двоеточие), например x: 5.

Если необходимо удалить значение переменной (очистить ее), то применяется метод kill : kill (x ) – удаляет значение переменной x, а команда kill(all) – удаляет значения всех используемых ранее переменных. И, кроме того, метод kill начинает новую нумерацию для исполняемых команд (обратите внимание, что ответом на команду (%i3), приведенную ниже, оказался ответ с номером ноль (%o0) done , и далее нумерация команд снова началась с единицы).

Напомним также, что в одной строке (см. % i 1), можно записать несколько команд, разделяя последние символом ; (точка с запятой) или знаком $ (доллар), если нам не требуется вывод результата на монитор.

Математические операции в Maxima используются для записи выражений. Всё в Maxima является выражениями, в том числе математические выражения как таковые, а также объекты и программные блоки. Простейшее выражение представляет собой атом, либо оператор с аргументами.

Атом - символ (имя), строка в двойных кавычках, либо число (целое или с плавающей точкой). Все выражения не-атомы представляются в виде oper (a1 ,.., aN ), где oper - имя оператора, a1,..., aN - его аргументы. Выражения могут отображаться по-разному, но внутреннее представление всегда одинаково. Аргументы выражения могут быть атомами, либо выражениями не-атомами.

Команда op возвращает оператор, args возвращает аргументы, atom определяет, является ли выражение атомом.

Например :

Функция symbolp возвращает «true», если её аргумент является символом.

Функция двух аргументов freeof(,) возвращает «true», если второй её аргумент свободен (не содержит) первого аргумента.

Функция zeroequiv(,) проверяет, является ли её аргумент –функция одного аргумента – нулём. Zeroequiv возвращает «true», если её аргумент равен нулю и «false» в противном случае.

Функция zeroequiv может быть полезной в тех случаях, когда в результате ряда преобразований нет уверенности в том, что полученная функция тождественна исходной.

3.10. Математические функции

В Maxima имеется большой набор встроенных математических функций. Наиболее часто используемые приведены в табл. 2.

Таблица 2

Встроенные математические функции Maxima

Функции

Обозначение

Тригонометрические

sin (синус),

cos (косинус),

tan (тангенс),

cot (котангенс)

Обратные

тригонометрические

asin (арксинус),

acos (арккосинус),

atan (арктангенс),

acot (арккотангенс)

Секонс, косеконс

sec (x) = 1/cos (x), (секонс ),

csc (x) = 1/sin (x), (косеконс )

Натуральный логарифм

log()

квадратный корень

sqrt()

модуль

abs()

остаток от деления

mod(,)

Минимальный из списка

min(x1, ... ,xN)

Максимальный из списка

max(x1, ... ,xN)

Знак аргумента

Pos (x>0),

Zero (x=0),

sign(x); = neg (x<0),

Pnz – (не определен)

Случайное число

random (N ) – целое, из промежутка

если N –целое

random (float (P )) – число с плавающей точкой

Следует иметь в виду, что некоторые названия функций отличаются от названий, используемых в отечественной литературе. В Maxima используется вместо tg – tan, вместо ctg – cot, вместо arcsin – asin, вместо arccos – acos, вместо arctg – atan, вместо arcctg – acot, вместо ln – log, вместо cosec – csc.

Примеры использования функций:

3.11. Правило записи функций

Для записи функции необходимо указать ее название, а затем, в круглых скобках записать через запятую значения аргументов. Если значением аргумента является список, то он заключается в квадратные скобки, а элементы списка также разделяются запятыми.

3.12. Пользовательские функции

Пользователь может задать собственные функции. Для этого сначала указывается название функции, в скобках перечисляются названия аргументов, после знаков := (двоеточие и равно) следует описание функции, которое может быть нематематическим. После задания пользовательская функция вызывается точно так, как и встроенные функции Maxima .

Нужно помнить, что не следует использовать для функций названия, зарезервированные для встроенных функций Maxima (записанные выше в табл. 2).

3.13. Перевод сложных выражений в линейную форму записи

Одним из самых сложных занятий для начинающих пользователей системы Maxima является запись сложных выражений, содержащих степени, дроби и другие конструкции, в линейной форме (в текстовой форме записи, при помощи ASCII символов, в одну строку).

Для облегчения данного процесса нелишне дать несколько рекомендаций:

1. Не забывайте ставить знак умножения! В графическом окне Maxima по правилам математики удвоенное значение переменной х записывает в виде 2x , но при записи команда для Maxima должна выглядеть как 2*x.

2. Но между именем функции и скобкой с аргументом знак умножения не пишется; sin *(x ) – здесь знак умножения лишний.

3. В случае сомнения всегда лучше перестараться и поставить «лишние», дополнительные скобки (). Числитель и знаменатель выражения всегда необходимо заключать в скобки. При записи возведения в степень основание и степень лучше всегда брать в скобки.

4. Функция не существует отдельно от своих аргументов (если таковые имеются). Поэтому, например, при возведении в степень функции некоторого аргумента следует взять всю функцию с аргументами в скобки, а потом уже возводить полученную конструкцию в нужную степень: (sin (x ))**2. Очень часто начинающие пользователи пытаются возвести в степень только название функции, забывая про аргументы: sin **2(x ) – это неправильно!

5. Также необходимо помнить, что несколько аргументов функции записываются в скобках, через запятую,например min (x 1, x 2, x 3, xN ).

6. Недопустима запись функции sin (2* x ) в виде sin *2* x или sin 2 x . Запомните, как действует Maxima при записи скобок: как только вы пытаетесь написать открывающую скобку, она тут же пишет вторую – парную ей – закрывающую скобку. Поэтому при записи функций напишите название функции, затем поставьте после нее пустые скобки и только потом в этих скобках напишите все ее аргументы, разделяя их запятыми. Никаких конструкций между названием функции и открывающейся скобкой быть не должно!

7. В случае записи сложного выражения разбейте его на несколько простых составляющих, введите их по отдельности, а затем объедините, используя рассмотренные ранее обозначения.

Примеры простых команд для Maxima :

Математическая запись

Команда для Maxima

(x+2)/(y–7)

(x+3)**(2*y)

sin((x–2)/(a+3))

((x–2)/(a+3)+2)/(4–(y–7)/(b+4))+12*x

Упражнение: Н еобходимо ввести следующее выражение:

Указания к выполнению: Разделим это выражение на три составные части: будем отдельной частью считать числитель, выражение, стоящее в знаменателе в скобках, и степень. Введем каждую названную составную часть, и объединим их в выражение.

При вводе команд строку с ошибочной записью команды для Maxima можно выделить и удалить с графического экрана (с клавиатуры), а вместо неё написать и выполнить (с клавиатуры нажатием Shift + Enter ) правильную команду, следует ожидать, что номер ответа при этом изменится.

Если щёлкнуть мышкой в незакрашенный треугольник, то треугольник закрасится, а строка с результатом будет скрыта, при этом появится запись (1 lines hidden). Чтобы удалить с экрана и ответ, и команду (блок, отмеченный слева квадратной скобкой), следует щелчком мыши выделить квадратную скобку у пары ввод–ответ, вызвать щелчком правой кнопки мыши контекстное меню и выбрать опцию Delete Selection. Так в предыдущих примерах строки с командой (%i4) и с ответом (%o4) нет – они удалены.

Заметим также, что при записи команды для Maxima (%o1)/(%o2)**(%o3) в строке (%i5) вполне допустимо перестраховаться и написать иначе, используя дополнительные скобки для знаменателя: (%o1)/((%o2)**(%o3)). Но Maxima правильно нас поняла и без этих «лишних скобок» и вычислила вводимое выражение математически правильно, поскольку понимает принятое в математике старшинство операций : прежде всего вычисляются аргументы (так как находятся в скобках) и функции, потом выполняется возведение в степень, затем операции деление и умножение и только потом – сложение и вычитание.

by 0):
а) y :2/ x ; x :0; б) u :0; v :2/ u ; в) z :0; t :2/ Z ; и почему?

3. Что является оператором в выражениях а) x^y; б) – t; в) x + y;?

4. Что ответитMaxima, если исполнить команду: u – v; op(%);?

5. Чему равнывыражения: а) 4 * – 2; б) 4 * + 2; в) 4 ** – 2;?

6. Что является аргументами в выражении fas (p , q ) := p – q ?

7. Является ли атомом выражение abc?

8. Почему в следующих примерахMaxima сумела численно рассчитать tg(π /2) и, но отказалась делать численные вычисления для ctg(0)?

9. Какой ответ даст Maxima, если команда для неё будет такой:

10. Что больше e π или π e ?

11. На сколько процентов большее из сравниваемых чисел превышает меньшее?

12. Что ответит Maxima, если команда для неё будет такой:

В Максима реализована возможность задания математических функций. Но я начну с того, что расскажу о встроенных функциях. Как правило, эти функции записываются аналогично математике.

Только вот математика эта американская, а не отечественная. Поэтому привычные нам со школы tg следует заменять на tan. Вот список тех функций, которые я смог обнаружить самостоятельно:

Функция в Maxima

Функция в математике

Гиперболический синус.

Гиперболический косинус.

Гиперболический тангенс.

Натуральный логарифм.

Арктангенс

Арксинус

acos(x) Арккосинус

Примечание: А вы знали, что если взять арксинус/арккосинус от числа больше 1, то у вас получится комплексное значение?

Наверняка встроенных функций куда больше. Если вам еще что-то нужно, то попробуйте обратиться к руководству по wxMaxima/Maxima. Там много интересного для начинающего любителя численных вычислений.

Рисунок 8: Встроенные функции в Maxima.

Если вы введете функцию, которая программе не известна, то она покажет вам точно такую же строку, как вы ввели. Но будьте внимательны! Если у вас установлен флаг numeric в дефолтное положение, то она поведет себя точно так же и с заданной функцией. Так что если вы намерены все же получить свой ответ, то переключите флаг, или передавайте функции вещественный параметр.

Теперь о том, как задавать собственные функции. Как и в математике, функция может быть определена выражением. Чтобы задать функцию, вы должны воспользоваться следующим оператором:

После определения вы можете использовать ее также, как и встроенные функции: f(3)

У функции также может быть несколько параметров, которые задаются и передаются через запятую. Пример вы можете увидеть на следующем скриншоте.

Рисунок 9: Собственные функции в wxMaxima

Как вы видите, ничего сложного. Используйте функции для упрощения ваших расчетов. Если вы последовательно посчитаете свои данные используя функцию, то у вас уже получится красивая табличка.

Циклическая обработка данных.

Это пожалуй самая сложная часть руководства, потому что она использует малопонятные непрограммистам циклы. Но если вы будете аккуратно вводить команды и не ошибаться, то все будет пучком.

Допустим, у вас имеется список A, который вы ввели по правилам, приведенным в разделе о вводе. Допустим, в нем находятся амплитудные значения тока. Тогда, чтобы получить действительные значения, вам необходимо каждое из них поделить на 2 .

for I in A do ldisp(I/sqrt(2))

По порядку. Здесь for - это ключевое слово, обозначающее цикл. I это временная переменная, которая соответствует одному из элементов списка. A это массив, который уже был введен вами ранее. Ключевое слово do говорит максиме что надо делать, проходя массив. Проход массива осуществляется поочередно, то есть действие после do выполняется столько раз, сколько находится элементов в массиве, а переменная I принимает на каждой итерации(итерация - одно выполнение цикла) значения a,a,...,a[n]. Дальше идет хитрая функция ldisp, которая позволяет нам увидеть, что она там такого насчитала. А параметром этой функции служит выражение. Если вы ничего не поняли, то не вдавайтесь в эти описания. А просто попробуйте сами дать эту команду, и поизменять ее параметры.

Примечание: Имена переменных и других объектов в максима регистрозависимы. Это значит, что I и i это две разные переменные.

Рисунок 10: Команда циклической обработки.

Этот способ подходит вам, если вы хотите посмотреть расчетные значения и затем записать их куда-нибудь к себе в лабник. А если вам требуется произвести над ними какие-то расчеты, то очевидно, их надо представить в удобном для этого виде. Например можно занести данные в список, аналогичный исходному. Для начала, нужно создать пустой список, чтобы потом в него можно было добавлять данные циклично. Это достигается командой:

Теперь можно заполнять:

for i in a do b:append(b, )

Этот цикл похож на предыдущий, но в него потребовалось внести некоторые

изменения, адекватно задаче. Теперь каждую итерацию цикла, в нем происходит переприсвоение списка b. Его присваивается список, составленный функцией append из прошлого состава списка b и еще одного списка, в котором находится лишь одно значение, нового рассчитанного элемента. Результатом является заполненный список b, которым вы можете оперировать, как будто бы сами ввели его. Чтобы посмотреть, что в нем есть, просто введите команду

Вы увидите ваш список.

Рисунок 11: Расчет с сохранением результатов.

Всего сказанного уже достаточно, чтобы посчитать обычную лабораторную работу. Особенно, если вы все это прочитали. Последовательность действий ваша должна быть примерно такой:

1. Ввести список исходных экспериментальных значений.

2. Задать функции для расчета значений.

3. Дать команды на циклический обсчет списков.

4. Занести данные в ваш лабник.

5. Закрыть лабник, и идти пить пиво на парапет, или куда-нибудь еще.

А теперь я расскажу о некоторых дополнительных фишках, которые могут вам помочь при подготовке к сдаче работы.


Система компьютерной математики Maxima -- настоящий ветеран среди программ этого класса. Она старше многих своих известных коммерческих собратьев по крайней мере на два десятка лет. Первоначально носившая имя Macsyma, она была создана в конце 1960-х годов в знаменитом Массачусетском технологическом институте и почти 20 лет (с 1982 по 2001) поддерживалась Биллом Шелтером (William Schelter), благодаря которому и приобрела свои замечательные качества и известность в научном мире. Подробности по истории системы, инсталляционный модуль (размером всего в 10 MB), документацию, исходный код и другую сопутствующую информацию можно найти на Web-узле пакета . Текущая версия (5.9.0) работает под управлением Windows и Linux.

Несмотря на скромные размеры, Maxima -- высокоинтеллектуальный продукт, способный решать сложные аналитические задачи. Как и большинство систем компьютерной математики, она является командным интерпретатором, взаимодействующим с пользователем по принципу "вопрос -- ответ". Поэтому рабочая область системы представляет собой последовательность ячеек ввода/вывода (рис. 1), маркированных меткой (С -- для ввода пользователя, D -- для результата) и номером. Такой способ обозначения обеспечивает удобный механизм ссылок, позволяющий для обращения к одному из предыдущих результатов ввести только имя нужной ячейки.

Численные операции

Рис. 1
С какими бы выражениями ни работала Maxima, она всегда стремится к представлению результатов в точной аналитической форме. Это в полной мере относится и к численным расчетам. Например, если ввести в командной строке выражение 1/2+1/3 , то результатом будет 5/6 . Для того чтобы получить значение в виде числа с плавающей точкой, необходимо указать это явно. Простейший способ состоит в задании специального дескриптора numer через запятую после введенного выражения.

Для расчетов с высокой точностью Maxima поддерживает специальные операторы, позволяющие вычислить любое значение с произвольной разрядной сеткой (в пределах, естественно, аппаратных возможностей). Это относится и к целым числам: их величина в системе программно не ограничена. К тому же Maxima имеет очень приличную скорость работы с арифметикой высокой точности, что дает возможность проводить вычисления с целыми числами в десятки и сотни тысяч разрядов с производительностью на уровне лучших коммерческих систем.

Отметим, что Maxima взвешенно подходит к регистру вводимых выражений. Если их вид близок к имени встроенной функции, программа использует эту функцию. Согласно данному правилу Sin , sin и SIN обозначают одно и то же. Вместе с тем пользовательские переменные и функции чувствительны к регистру -- X и x могут обозначать разные объекты.

Система также поддерживает комплексную арифметику и ряд известных математических констант.


Аналитические операции

Способность к сложным аналитическим операциям и преобразованиям, безусловно, стала главной чертой продукта, обеспечившей успех Maxima в среде специалистов. Сюда входят стандартные операции анализа (дифференцирование, интегрирование, вычисление пределов), представление выражений в развернутой форме, разложение функций в ряды, упрощения, преобразования, подстановки и т. п. Причем данная функциональность достаточно гибка для проведения серьезных научных исследований. Так, можно находить частные и обыкновенные производные любого порядка, интегралы бывают как обыкновенными, так и кратными, в качестве границ интегрирования допускается бесконечность и т. д. Как всегда, программа будет стремиться представить все вычисленные значения в замкнутой (точной) форме.

В случае если для введенного выражения нельзя получить однозначный результат, программа практически на естественном (английском) языке задаст наводящие вопросы. К примеру, при попытке найти интеграл от функции x n Maxima уточнит, не равно ли n+1 нулю (как известно, от этого существенно зависит результат). Впрочем, таких вопросов можно избежать, если заранее с помощью специальных операторов указать область изменения используемых параметров и переменных.

Аналитический аппарат также поддерживает алгебраические операции с полиномами (деление двух полиномов, вычисление наибольшего общего делителя, разложение на множители) и тригонометрическими выражениями. Для практических приложений большую роль играют заложенные в систему инструменты решения уравнений и систем различных типов -- алгебраических, трансцендентных и дифференциальных.


Операции линейной алгебры

В Maxima реализован весьма совершенный механизм векторно-матричных операций, позволяющий проводить сложные алгебраические вычисления. Матрицы вводятся универсальным оператором matrix , затем к ним применимы обычные линейные операции -- сложение, вычитание, умножение на скаляр (для их записи используют естественную математическую нотацию вроде A+B ), а также транспонирование, обращение, вычисление определителей, спектральных характеристик и пр.


Графические возможности

Современная система компьютерной математики универсального типа обязана обладать развитыми возможностями визуализации данных. Имеются они и в Maxima. Графики в системе строятся с помощью двух функций -- PLOT2D (двумерные, рис. 2) и PLOT3D (трехмерные, рис. 3). Несмотря на этот относительно небогатый выбор, названные инструменты позволяют выводить графики разных типов на плоскости и в пространстве с достаточно тонкими настройками -- посредством специальных операторов или аргументов функций задаются количество узлов сетки, на которой строится требуемый график, диапазоны данных, цветовые и другие характеристики. Кроме того, можно воспользоваться интерактивными настройками для быстрого изменения толщины линий, поворота трехмерной поверхности и т. д. Выбор форматов экспорта Maxima весьма узок: рисунки в программе сохраняются, по сути, только в PostScript. В целом же визуальные инструменты системы относительно скромны, хотя и дают возможность получить качественные графики некоторых типов.


Средства программирования

Как и всякая система компьютерной математики, Maxima позволяет создавать сложные программы и использовать их в задачах, решение которых с помощью командной строки может оказаться сложным и неэффективным.

В самом простом случае пользовательская функция определяется прямо в командной строке

MyFunc(x,y):=x^2+y^2;

Затем MyFunc можно применять наряду со встроенными. Конечно же, система поддерживает и более сложные конструкции. В теле функции допускаются операторы ветвления, циклов, ввода/вывода и т. д. Язык программирования в Maxima имеет некоторые особенности, важнейшей из которых является то, что число аргументов функции не обязано быть фиксированным. Другая состоит в чрезвычайно гибких средствах для работы с массивами, которые редко встретишь не только в традиционных языках, но и специализированных системах, в том числе СКМ. Вот несколько примеров, заимствованных из одного руководства (двоеточие в Maxima означает присваивание):
a:4*u;
a:%PI;
a[x]:mystery;

Все операторы корректны и задают в совокупности массив, индексами которого служат числа 4 , 22/7 и строка "x" , а значениями элементов -- выражение 4*u , число π (в Maxima оно записывается как %PI) и строка символов "mystery" . Таким образом, как элементом массива, так и его индексом может выступать практически любое выражение. Оригинальные свойства Maxima вовсе не ограничиваются этими особенностями (например, поддерживаются даже массивы функций), но мы не будем останавливаться на деталях.

Вообще, Maxima написана на языке Lisp и непосредственно поддерживает многие его команды. Можно сказать, что Lisp является ядром системы, и к нему допускается обращаться при "низкоуровневом" программировании. Впрочем, в большинстве случаев этого не требуется. Maxima предоставляет достаточное количество уже готовых средств, использовать которые значительно проще, чем Lisp-операторы.

При необходимости программы сохраняются во внешних файлах. Команды записываются в том же виде, в каком они вводятся в систему, имеются лишь некоторые особенности для оформления функций.

Забота о пользователе

Кроме документации, доступной на Web-узле продукта, в комплект поставки входят введение в Maxima и учебник по системе (оба в формате HTML) -- детальное описание, достаточное для углубленного ознакомления со всеми ее возможностями. Однако во время сеанса работы с системой нередко необходимо получить оперативную справку. Для этого Maxima предоставляет функцию DESCRIBE() , которая выводит подробные сведения об интересующем пользователя операторе (который передается ей в качестве аргумента). Не беда, если вы не помните его полный синтаксис, введите несколько первых букв названия -- и Maxima выдаст все доступные имена, начинающиеся с данной комбинации символов. Если же этих сведений окажется недостаточно, то можно воспользоваться функцией EXAMPLE() , которая предложит характерные примеры. К функциям этого же ряда принадлежит DEMO() , выполняющая программы из демонстрационных файлов, поставляемых с системой. Хотелось бы отметить такую особенность системы, как возможность представления результатов вычислений в формате TeX с помощью функции, которая так и называется -- TEX() .


Выводы

Надеемся, что после этого небольшого материала у читателей все же сложилось представление о Maxima как о действительно профессиональной системе, предназначенной для решения сложных численных и аналитических задач, а также графического представления данных. Особенно, как было отмечено вначале, программа сильна в аналитических расчетах и арифметике высокой точности. Конечно, Maxima далеко не совершенна, и по многим аспектам не дотягивает до коммерческих продуктов вроде Maple и Mathematica. Однако это не умаляет ее достоинств -- Maxima вполне можно использовать и в учебных целях, и в качестве платформы для вполне серьезных научных разработок.

0