Интернет Windows Android

Т киллеры уничтожают вирус вич. Влияние вич на т-хелперы

Несмотря на относительно молодой возраст ВИЧ по сравнению с такими инфекциями-долгожителями, как малярия или туберкулез, этот вирус ежегодно инфицирует около 30 миллионов человек по всему миру. 2,5-3 миллиона человек в год гибнут от синдрома приобретенного иммунодефицита — примерно столько же, сколько и от малярии, и вдвое больше, чем от туберкулёза.

Изобретение и быстрое внедрение десятков высокоактивных противовирусных препаратов уже позволяет больным долгое время вести нормальный образ жизни, но сообщения о полном избавлении от ВИЧ пока больше смахивают на фантастику. Все эти препараты на той или иной стадии замедляют деление вируса, препятствуя образованию новых копий генетического материала или сборке целой вирусной частицы.

Джеймс Райли и соавторы публикации в Nature Medicine решили пойти принципиально иным путём и помочь самой иммунной системе справиться с вирусом.

Ученые «вооружили» клетки-киллеры иммунной системы новым вариантом рецептора, позволяющим распознавать и уничтожать пораженные вирусом клетки.

Безусловно, это не первая попытка заставить иммунную систему самостоятельно справиться с ВИЧ, однако высокая изменчивость вируса и эксплуатация им иммунных клеток, подрывающая их работу, сильно затрудняют разработку вакцин. Райли и коллеги решили сосредоточиться на агентах, предназначенных непосредственно для уничтожения заражённых вирусами клеток организма, — так называемых T-киллерах. Подобный подход в виде клеточной терапии, уже показал свою эффективность в лечении злокачественных опухолей.

На поверхности каждой клетки нашего организма есть так называемые молекулы комплекса гистосовместимости I типа, MHC I (от английского Major Histocompatibility Complex). Эта структура — своеобразный «дисплей», на котором отображаются процессы синтеза белков, протекающие внутри клетки. Каждый раз, когда в клетке образуется новый белок, небольшой его участок из десяти-пятнадцати аминокислот отправляется на поверхность, где и «отображается» в составе MHC I.

Т-киллеры непрерывно «сканируют» все клетки организма, и если на одной из них упомянутая аминокислотная цепочка оказывается чужеродной — той, на которую натренирован T-киллер, то тут же принимаются за уничтожение. Проблема вирусов и опухолей в том, что им удается либо «спрятать» свои собственные белки от представления в составе MHC I, либо они обладают настолько высокой изменчивостью, что иммунитет просто не успевает за непрерывно меняющимися врагами.

Вирус иммунодефицита славится своей исключительной изменчивостью, однако и у него есть белки, с которыми особо не поиграешь. Один из них называется p17.

Вирусологи выбрали в качестве мишени для опознания ВИЧ небольшой, длиной в 9 аминокислот — с 77-й по 85-ю аминокислоты — участок этого белка, получивший кодовое название SL9. В трех из четырех случаях заражения ВИЧ эта цепочка обязательно попадает на поверхность клеток.

У абсолютного большинства европеоидов есть ген, кодирующий Т-клеточный рецептор TCR 868, запускающий программу убийства заражённых клеток при связывании с SL9. Проблема в том, что даже при встрече с этой цепочкой рецептор с ней связывается далеко не всегда и очень ненадолго. Команды на размножение SL9-специфичных клеток и убийство ими клеток, заражённых ВИЧ, выдаются редко. В итоге вирус размножается быстрее, чем T-киллеры, способные его уничтожить.

Райли и коллеги выделили ДНК, кодирующую TCR 868, и сделали несколько незначительно отличающихся от неё копий. Считанные с этой матрицы белки незначительно отличались от TCR 868 и тоже связывались с SL9. Чтобы выяснить, какой лучше, учёные даже устроили этим клеткам своего рода эволюционное соревнование этих искусственно полученных белков-мутантов, заставив выживать сильнейших.

По некоторым показателям мутант-победитель превзошёл своего прародителя в 100 с лишним раз.

Например, время связывания Т-киллера, на поверхности которого находился рецептор-мутант, с пораженной ВИЧ клеткой увеличилось с 1 минуты до 2,5 часов. В условиях культуры in vitro это позволило Т-киллерам подавить размножение ВИЧ и даже выработать достаточное количество цитокинов, которые в организме должны только усиливать реакцию уничтожения.

Но, самое главное, встраивание гена мутантного рецептора в геном Т-киллера давало тот же самый эффект, даже если в качестве мишени выступали изменившиеся цепочки SL9.

К первым испытаниям новой методики лечения больных СПИДом Райли и его коллеги рассчитывают приступить уже в следующем году — если испытания на мышках, которые уже идут, окажутся успешными. Примерный план лечения будет напоминать существующие сегодня методы клеточной терапии опухолей, за тем исключением, что врачи будут не выбирать из Т-киллеров больного наиболее подходящие клетки, а будут создавать их с помощью генной терапии.

Примерная схема лечения будет выглядеть так: у больного забирают немного крови из вены, из этой крови выделяют все Т-киллеры, потом в активной форме встраивают в их ДНК ген, кодирующий «мутантный 868», после чего размножают клетки в культуре in vitro и вводят их обратно больному. В результате Т-киллеры, способные эффективно распознавать пораженные ВИЧ клетки, оказываются в организме, распределяются по кровотоку, а каждая встреча с мишенью приводит к образованию новых Т-киллеров, только усиливая реакцию уничтожения.

Насколько эффективными окажутся эти попытки, «Газета.Ru» обязательно расскажет, а сами ученые уже планируют использовать разработанный ими метод и при создании новых Т-рецепторов для борьбы с опухолями.

Развитие заболевания СПИДом имеет несколько стадий, которые определяются по титру ВИЧ и по количеству антител к ВИЧ. Второй способ менее точен, особенно на поздних стадиях, когда иммунитет практически отсутствует.
Первая стадия заболевания называется острой, и в это время больные очень заразны. В течение примерно трех недель после заражения у большинства людей проявляются неопределенные симптомы, такие как лихорадка, головная боль, высыпания на коже, увеличение лимфатических узлов, чувство дискомфорта. В это время концентрация вируса в крови очень высока, он разносится по всему организму, часто мутирует. Количество лимфоцитов CD4, составляющее в норме не менее 800 клеток в 1 крови, резко уменьшается, а титр ВИЧ растет. Еще через 1–3 недели эти симптомы постепенно исчезают. К этому времени иммунная система берет заболевание под контроль: клетки CD4 стимулируют другие Т-лимфоциты (CD8, или Т-киллеры), которые начинают интенсивно уничтожать инфицированные клетки, продуцирующие ВИЧ. Кроме того, образуется большое количество антител к ВИЧ, которые связываются со свободными вирусными частицами вне клеток и инактивируют их.
Активная иммунная реакция в конце острой стадии помогает организму сохранить популяцию лимфоцитов CD4. Это очень важно для последующей борьбы с инфекцией. Кроме того, если клетки CD4 полностью исчезнут, то иммунная система не может восстановить их, даже если полностью убрать ВИЧ из организма.
После острой стадии наступает бессимптомная, или хроническая, стадия, которая может длиться 10 лет и более. В это время инфицированные люди чувствуют себя хорошо, уровень лимфоцитов CD4 в крови близок к норме, хотя и невысок (500–750 в 1 мм3 крови). Содержание ВИЧ в крови стабилизируется на некотором уровне, от которого в сильной степени зависит дальнейшее развитие заболевания. При этом вирус не переходит в пассивное состояние, как считалось раньше, а продолжает интенсивно размножаться и разрушать иммунную систему. Кажущееся хорошим состояние здоровья больных объясняется тем, что иммунная система производит лимфоциты CD4 в огромных количествах, поэтому их содержание в крови поддерживается на уровне, достаточном для борьбы с другими патогенами.
В непрерывной борьбе с вирусом иммунная система постепенно истощается, и в конце концов уровень лимфоцитов CD4 в крови начинает быстро снижаться. Когда он достигает 200 клеток в 1 мм3 крови, носители ВИЧ превращаются в больных СПИДом. Эта так называемая ранняя симптоматическая стадия может длиться от нескольких месяцев до нескольких лет. В этот период обычно развиваются сопутствующие заболевания, которые для людей, не инфицированных ВИЧ, обычно не представляют опасности.
Когда содержание лимфоцитов CD4 в крови падает ниже 100 клеток в 1 мм3, наступает поздняя симптоматическая стадия, для которой характерно значительное разрушение иммунной системы и тяжелое болезненное состояние. Эта стадия также может длиться от нескольких месяцев до нескольких лет. Больной резко теряет в весе, ощущает постоянную усталость; его иммунная система практически не функционирует. Через некоторое время заболевание переходит в последнюю стадию, когда количество лимфоцитов CD4 падает до 50 в 1 мм3 и менее. Эта стадия длится 1–2 года, после чего наступает смерть от инфекционных заболеваний, сопутствующих СПИДу, или от рака.
Развитие заболевания очень сильно зависит от индивидуальных особенностей больных. Так, сопутствующие заболевания могут появиться и при уровнях лимфоцитов CD4 более 200 – в этом случае ход инфекционного заболевания позволяет диагностировать СПИД независимо от их содержания в крови больных. Без специального лечения продолжительность жизни после инфицирования ВИЧ обычно составляет 10–11 лет, однако в некоторых случаях она не превышает одного года, а у 4–7% инфицированных ВИЧ нормальные уровни лимфоцитов CD4 в крови сохраняются в течение 8 и более лет, при этом продолжительность жизни пациентов превышает 20 лет.

Борьба с вирусом иммунодефицита человека (ВИЧ) не прекращается, и пока он остается нерешенной проблемой человечества. Современные методы лечения продлевают жизнь инфицированных людей практически до продолжительности жизни здоровых, но при этом они лишь подавляют репликацию вируса, не позволяя добиться полного излечения. Некоторая доля зараженных ВИЧ клеток не погибает и становится латентным (скрытым) резервуаром вируса. Ученые из США разработали специальные антитела, направляющие цитотоксичные Т-клетки на атаку латентных ВИЧ-клеток. Перспективы прямого применения этого подхода не очевидны, но полученные результаты могут оказаться важным шагом на пути разработки средств и методов полного излечения от СПИДа.

Разработку биспецифических антител можно считать одним из наиболее важных достижений последнего времени в иммунологии и медицине, особенно в лечении онкологических заболеваний. Такой подход к лечению стали изучать в середине 80-х годов ХХ века, и довольно быстро исследования in vitro показали, что у него большой потенциал. В отличие от обычных природных антител (рис. 3), биспецифические антитела представляют собой искусственные белковые конструкции состоящие из фрагментов двух различных антител (рис. 4) и поэтому связывающиеся с двумя различными антигенами. Наиболее часто и успешно они используются для лечения рака. В этих случаях они чаще всего устроены так, что связывают цитотоксические Т-клетки (T-киллеры) иммунной системы (по их поверхностному антигену CD3) с раковыми клетками-мишенями, подлежащими уничтожению (по их поверхностному антигену).

Первые биспецифические антитела представляли собой фактически трифункциональные антитела (см. Trifunctional antibody), созданные для поражения раковых клеток. Они состояли из двух легких и двух тяжелых белковых цепей (рис. 4). Каждая пара из них происходила из двух различных антител. Два участка связывания антигена (Fab , fragment antigen-binding) распознавали два различных антигена. Константная область (кристаллизующийся фрагмент иммуноглобулина , fragment crystallizable region) образовывала третий участок связывания с антигеном, откуда и произошло название «трифункциональные антитела».

Но на пути ученых возникали трудности: биспецифические антитела непросто производить в больших количествах, а всевозможные испытания заняли много времени. К тому же применение таких антител оказалось сопряжено с рядом побочных эффектов, таких как иммуногенность (способность вызывать иммунный ответ), выделение токсичных веществ, а также короткое время существования в организме.

Чтобы решить эти проблемы позже были разработаны другие типы биспецифических антител, составленные из фрагментов антител - из химически связанных Fab, из укороченных доменов, распознающих антигены, из гибридных белков, представляющих собой соединенные между собой распознающие домены различных антител (рис. 4). Сейчас в клиническую практику введены уже несколько противораковых лекарств на основе биспецифических антител, например катумаксомаб (Catumaxomab) и блинатумомаб (Blinatumomab), разработанный на основе биспецифического «мобилизатора Т-клеток» BiTE и применяющийся против острой лимфобластной лейкемии.

Следует отметить, что впервые биспецифические антитела против клеток, продуцирующих ВИЧ, были разработаны еще 25 лет назад, но они были несовершенны, и как средство для лечения не применялись (см. J. Berg et al., 1991. Bispecific antibodies that mediate killing of cells infected with human immunodeficiency virus of any strain и А. Traunecker et al., 1991. Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells). Это было в период, когда еще не были созданы эффективные противовирусные лекарства и исследователи испытывали разные пути борьбы c ВИЧ. Авторы обсуждаемых статей пошли дальше: конструкции биспецифических антител стали более совершенны, а главное, они были направлены против латентных ВИЧ-резервуаров.

Оба коллектива описывают разработку и исследование свойств биспецифических антител, в которых фрагменты антитела к поверхностному антигену ВИЧ gp120 соединены с фрагментами антитела к поверхностному антигену CD3 Т-киллеров - важнейшему компоненту клеточного иммунитета. Расчет, как в случаях противораковых антител, делается на то, что такая конструкция «подтянет» к клеткам, зараженным ВИЧ, Т-киллеры, которые будут их уничтожать (рис. 5 и рис. 6).

Хотя философия обоих исследований одинакова, конструкции антител в них немного отличаются (у группы A. Pegu et al. она представляется более совершенной). Дело в том, что для того, чтобы комплекс «Т-клетка + антитело» мог распознать латентные ВИЧ-резервуары, требуется спровоцировать их на продукцию поверхностных белков вируса. В работе группы J. Sung et al. это достигалось путем обработки клеток in vitro фитогемагглютинином - белком растительного происхождения, ингибитором фермента деацетилазы гистонов . В работе группы A. Pegu et al. такая «провокация» не была обязательна: их биспецифические антитела могли сами индуцировать в латентных ВИЧ-клетках продукцию поверхностных белков вируса. Было показано, что разработанные системы эффективно убивали in vitro как культивируемые латентные ВИЧ-клетки, так и зараженные клетки, полученные от больных.

Авторы обеих работ полагают, что созданные ими биспецифические антитела потенциально могут стать эффективным иммунотерапевтическим средством для истребления латентных резервуаров ВИЧ. И научное сообщество, и общество в целом должны приветствовать и поддерживать исследования, направленные на полное излечение от ВИЧ. Но в данном случае перспективы клинического применения описанного подхода пока не вполне очевидны, необходимы дополнительные детальные исследования. Описанные исследования проводились in vitro , и неизвестно, в какой мере достигнутые эффекты будут иметь место в организме. Известно, что иммунотерапия с помощью чужеродных антител вызывает в организме иммунный ответ, направленный против этих антител. И такой побочный эффект действительно наблюдался группой A. Pegu et al. в опытах на обезьянах.

Агент, который бы индуцировал продукцию антигенов ВИЧ в латентно зараженных клетках, не повреждая при этом здоровые клетки, пока неизвестен. Более того, латентные резервуары ВИЧ могут находиться, например, в центральной нервной системе, куда проникновение белковых молекул затруднено из-за наличия гематоэнцефалического барьера . В общем, до применения полученных результатов пока очень далеко, и необходимо провести еще много исследований. Тем не менее, обсуждаемые работы представляются важным шагом на пути разработки средств и методов полного избавления от ВИЧ.

Источники:
1) Julia A. M. Sung et al. Dual-Affinity Re-Targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells // The Journal of Clinical Investigations. 2015. V. 125. P. 4077–4090.
2) Amarendra Pegu et al. Activation and lysis of human CD4 cells latently infected with HIV-1 // Nature Communications . 2015. V. 6. Article number: 8447.
3) Douglas D. Richman. HIV: Cure by killing // Nature . 2015. V. 528. P. 198–199. (Популярный синопсис к обсуждаемым статьям.)

Вячеслав Калинин

Кандидат биологических наук А. ЛУШНИКОВА. По материалам "Scientific American".

Вирус иммунодефицита человека (ВИЧ) открыли в 1983 году сразу в двух лабораториях: в Институте Пастера во Франции, под руководством Люка Монтанье, и в Национальном институте рака (США), Роберт Галло и его сотрудники. Сейчас уже ни у кого нет сомнений в том, что ВИЧ вызывает страшную болезнь, "чуму ХХ века" - СПИД (это название расшифровывается как "синдром приобретенного иммунодефицита"). Однако за более чем десятилетнюю историю исследований накопилось немало загадок, связанных с развитием этого заболевания. Например, у некоторых зараженных вирусом иммунодефицита людей признаки болезни появляются спустя несколько лет или не появляются вовсе. Оказалось, что существуют люди, устойчивые к СПИДу. Как много таких людей, какими особенностями они обладают, не есть ли это ключ к лечению страшной болезни? На эти вопросы пытается ответить публикуемая статья.

Так устроен вирус иммунодефицита человека. Внутри него находится наследственный материал - две молекулы РНК, на поверхности - белки оболочки.

У человека с обычным иммунитетом клетки-киллеры, несущие на своей поверхности молекулу-рецептор СD8, выделяют гормоноподобные вещества хемокины.

Если человек имеет нормальный ген ССR5, то под контролем этого гена в клетках-мишенях вырабатывается белок, который совместно с другим белком (СD4) служит "посадочной площадкой" для вируса иммунодефицита на поверхности клетки.

Иголка в стоге сена

Генетикам давно известны гены устойчивости к некоторым вирусам у мышей, например к вирусу лейкоза. Но существуют ли подобные гены у человека, и если да, то какова их роль в защите против СПИДа?

Стивен О"Брайн и Михаэль Дин со своими коллегами из Национального института рака США много лет вели поиск таких генов у человека.

В начале 80-х годов американские ученые исследовали множество людей, которые по тем или иным причинам могли заразиться вирусом иммунодефицита. Они проанализировали тысячи образцов крови и обнаружили, казалось бы, необъяснимое явление: у 10-25% обследованных вирус вообще не выявляется, а около 1% носителей ВИЧ - относительно здоровы, признаки СПИДа у них либо отсутствуют, либо выражены очень слабо, а иммунная система в полном порядке. Неужели существует какая-то устойчивость к вирусу у некоторых людей? И если да, то с чем она связана?

Опыты на лабораторных мышах, крысах, морских свинках и кроликах показали, что устойчивость к различным вирусным инфекциям часто определяется целым набором генов. Оказалось, что сходный механизм определяет и устойчивость к вирусу иммунодефицита человека.

Известно, что многие гены ответственны за выработку определенных белков. Часто бывает, что один и тот же ген существует в нескольких измененных вариантах. Такие "многоликие" гены называются полиморфными, а их варианты могут отвечать за выработку различных белков, которые по-разному ведут себя в клетке.

Сравнив восприимчивость к вирусам у мышей, несущих множество разнообразных наборов генов, и у мышей с небольшим числом генных вариантов, ученые пришли к выводу, что чем разнороднее генетически были животные, тем реже они заражались вирусом. В таком случае можно предположить, что в генетически разнообразных человеческих популяциях генные варианты, определяющие устойчивость к ВИЧ, должны встречаться достаточно часто. Анализ заболеваемости СПИДом среди американцев различных национальностей выявил еще одну особенность: более устойчивы американцы европейского происхождения, у африканцев и азиатов устойчивость близка к нулю. Чем объяснить такие различия?

Ответ на этот вопрос предложил в середине 80-х годов американский вирусолог Джей Леви из Калифорнийского университета в Сан-Франциско. Леви и его коллеги пытались выяснить, какие именно клетки в организме поражает вирус. Они обнаружили, что после того, как вирус заражает иммунные клетки, они легко узнаются иммунными клетками другого типа, так называемыми Т-киллерами (убийцами). Киллеры разрушают зараженные вирусом клетки, препятствуя дальнейшему размножению вируса. Клетки-убийцы несут на своей поверхности особую молекулу - рецептор CD8. Она, как принимающая антенна, "узнает" сигналы от клеток, зараженных вирусом, и клетки-убийцы уничтожают их. Если из крови удалить все клетки, несущие молекулу CD8, то вскоре в организме обнаруживаются многочисленные вирусные частицы, происходит быстрое размножение вируса и разрушение лимфоцитов. Не в этом ли ключ к разгадке?

В 1995 году группа американских ученых под руководством Р. Галло обнаружила вещества, которые вырабатываются в клетках-киллерах, несущих молекулы CD8, и подавляют размножение ВИЧ. Защитные вещества оказались гормоноподобными молекулами, называемыми хемокинами. Это небольшие белки, которые прикрепляются к молекулам-рецепторам на поверхности иммунных клеток, когда клетки направляются к месту воспаления или заражения. Оставалось найти "ворота", сквозь которые проникают в иммунные клетки вирусные частицы, то есть понять, с какими именно рецепторами взаимодействуют хемокины.

Ахиллесова пята иммунных клеток

Вскоре после открытия хемокинов Эдвард Бергер, биохимик из Национального института аллергических и инфекционных болезней в Бетезде, США, обнаружил в иммунных клетках, в первую очередь поражаемых вирусом (их называют клетки-мишени), сложный по строению белок. Этот белок как бы пронизывает мембраны клеток и содействует "посадке" и слиянию вирусных частиц с оболочкой иммунных клеток. Бергер назвал этот белок "фузин", от английского слова fusion - слияние. Оказалось, что фузин родствен белкам-рецепторам хемокинов. Не служит ли этот белок "входными воротами" иммунных клеток, через которые вирус проникает внутрь? В таком случае взаимодействие с фузином какого-нибудь другого вещества закроет доступ вирусным частицам в клетку: представьте, что в скважину замка вставляется ключ, и вирусная "лазейка" исчезает. Казалось бы, все встало на свои места, и взаимосвязь хемокины - фузин - ВИЧ уже не вызывала сомнений. Но верна ли эта схема для всех типов клеток, зараженных вирусом?

Пока молекулярные биологи распутывали сложный клубок событий, происходящих на поверхности клеток, генетики продолжали поиск генов устойчивости к вирусу иммунодефицита у людей. Американские исследователи из Национального института рака получили культуры клеток крови и различных тканей от сотен пациентов, зараженных ВИЧ. Из этих клеток выделили ДНК для поиска генов устойчивости.

Чтобы понять, насколько сложна эта задача, достаточно вспомнить, что в хромосомах человека содержится около 100 тысяч различных генов. Проверка хотя бы сотой доли этих генов потребовала бы нескольких лет напряженной работы. Круг генов-кандидатов заметно сузился, когда ученые сосредоточили свое внимание на клетках, которые прежде всего поражает вирус, - так называемых клетках-мишенях.

Уравнение со многими неизвестными

Одна из особенностей вируса иммунодефицита заключается в том, что его гены внедряются в наследственное вещество зараженной клетки и "затаиваются" там на время. Пока эта клетка растет и размножается, вирусные гены воспроизводятся вместе с собственными генами клетки. Затем они попадают в дочерние клетки и заражают их.

Из множества людей с высоким риском заражения ВИЧ отобрали зараженных вирусом и тех, кто не стал носителем ВИЧ, несмотря на постоянные контакты с больными. Среди зараженных выделили группы относительно здоровых и людей с быстро развивающимися признаками СПИДа, которые страдали сопутствующими заболеваниями: пневмонией, раком кожи и другими. Ученые изучили разные варианты взаимодействия вируса с организмом человека. Различный исход этого взаимодействия, по-видимому, зависел от набора генов у обследованных людей.

Выяснилось, что люди, устойчивые к СПИДу, имеют мутантные, измененные гены рецептора хемокинов - молекулы, к которой прикрепляется вирус, чтобы проникнуть в иммунную клетку. У них контакт иммунной клетки с вирусом невозможен, поскольку нет "принимающего устройства".

В это же время бельгийские ученые Михаэль Симпсон и Марк Парментье выделили ген другого рецептора. Им оказался белок, который также служит рецептором для связывания ВИЧ на поверхности иммунных клеток. Только взаимодействие этих двух молекул-рецепторов на поверхности иммунной клетки создает "посадочную площадку" для вируса.

Итак, основными "виновниками" заражения клеток вирусом иммунодефицита служат молекулы-рецепторы, названные CCR5 и CD4. Возник вопрос: что происходит с этими рецепторами при устойчивости к ВИЧ?

В июле 1996 года американская исследовательница Мэри Керингтон из Института рака сообщила, что нормальный ген рецептора ССR5 обнаруживается лишь у 1/5 обследованных ею пациентов. Дальнейший поиск вариантов этого гена среди двух тысяч больных дал удивительные результаты. Оказалось, что у 3% людей, не заразившихся вирусом, несмотря на контакты с больными, ген рецептора ССR5 измененный, мутантный. Например, при обследовании двух нью-йоркских гомосексуалистов - здоровых, несмотря на контакты с зараженными, выяснилось, что в их клетках образуется мутантный белок CCR5, не способный взаимодействовать с вирусными частицами. Подобные генетические варианты были найдены лишь у американцев европейского происхождения или у выходцев из западной Азии, у американцев же африканского и восточноазиатского происхождения не нашли "защитных" генов.

Оказалось также, что устойчивость некоторых пациентов к инфекции лишь временная, если они получили "спасительную" мутацию только от одного из своих родителей. Через несколько лет после заражения количество иммунных клеток в крови таких пациентов снижалось в 5 раз, и на этом фоне развивались сопутствующие СПИДу осложнения. Таким образом, неуязвимыми для ВИЧ были только носители сразу двух мутантных генов.

Но у обладателей одного мутантного гена признаки СПИДа все же развивались медленнее, чем у носителей двух нормальных генов, и такие больные лучше поддавались лечению.

Продолжение следует

Не так давно исследователи обнаружили разновидности чрезвычайно агрессивных вирусов. Людей, зараженных такими вирусами, не спасает даже присутствие двух мутантных генов, обеспечивающих устойчивость к ВИЧ.

Это заставляет продолжать поиск генов устойчивости к ВИЧ. Недавно американские исследователи О"Брайн и М. Дин с коллегами обнаружили ген, который, присутствуя у людей лишь в одной копии, задерживает развитие СПИДа на 2-3 года и более. Значит ли это, что появилось новое оружие в борьбе с вирусом, вызывающим СПИД? Скорее всего, ученые приоткрыли еще одну завесу над загадками ВИЧ, и это поможет медикам в поисках средств лечения "чумы ХХ века". В многочисленных популяциях американцев афро-азиатского происхождения мутантные гены так и не найдены, но тем не менее есть небольшие группы здоровых людей, контактировавших с зараженными. Это говорит о существовании других генов защиты иммунной системы от страшной инфекции. Пока можно лишь предполагать, что в различных популяциях человека сложились свои системы генетической защиты. По-видимому, и для других инфекционных заболеваний, включая вирусный гепатит, также имеются гены устойчивости к вирусам-возбудителям. Теперь уже никто из генетиков не сомневается в существовании таких генов для вируса иммунодефицита. Исследования последних лет дали надежду найти решение такой, казалось бы, неразрешимой проблемы, как борьба со СПИДом. Кто станет победителем в противоборстве ВИЧ - человек, покажет будущее.

Наука - здравоохранению

КАК ЛЕЧИТЬ СПИД. ПОИСК СТРАТЕГИИ

Результаты исследований последних лет заставили задуматься не только ученых и практических врачей, занимающихся проблемами СПИДа, но и фармацевтов. Раньше основное внимание уделялось комбинированному лечению инфекции, направленному против вируса. Применялись препараты, препятствующие размножению вируса в клетке: невипарин и атевирдин. Это так называемая группа ингибиторов обратной транскриптазы ВИЧ, которые не дают наследственному материалу вируса внедряться в ДНК иммунных клеток. Их сочетают с аналогами нуклеозидов типа зидовудина, диданозина и ставудина, которые облегчают течение болезни. Однако эти средства токсичны и обладают побочными действиями на организм, поэтому их нельзя считать оптимальными. Им на смену все чаще приходят более совершенные средства воздействия на ВИЧ.

В последнее время появилась возможность препятствовать "посадке" вирусных частиц на поверхность клеток. Известно, что этот процесс происходит за счет связывания вирусного белка gр120 с клеточными рецепторами. Искусственное блокирование мест связывания ВИЧ с помощью хемокинов должно защищать клетки от вторжения ВИЧ. Для этого нужно разработать специальные препараты-блокаторы.

Другой путь - получение антител, которые будут связываться с рецепторами ССR5, создающими "посадочную площадку". Такие антитела будут препятствовать взаимодействию этих рецепторов с вирусом, не давая доступа ВИЧ в клетки. Кроме того, можно вводить в организм фрагменты молекул ССR5. В ответ на это иммунная система начнет вырабатывать антитела к данному белку, которые также перекроют доступ к нему вирусных частиц.

Наиболее дорогостоящий способ обезопасить вирусные частицы - ввести в иммунные клетки новые мутантные гены. В результате сборка рецептора для "посадки" вируса на поверхности "оперированных" клеток прекратится, и вирусные частицы не смогут заразить такие клетки. Подобная защищающая терапия, по-видимому, наиболее перспективна при лечении больных СПИДом, хотя и весьма дорого стоит.

При лечении сопровождающих СПИД раковых заболеваний врачи чаще всего прибегают к высоким дозам химических препаратов и к облучению опухолей, что нарушает кроветворение и требует пересадки больным здорового костного мозга. А что, если в качестве донорских кроветворных клеток пересадить больному костный мозг, взятый от людей, генетически устойчивых к инфекции ВИЧ? Можно предположить, что после такой пересадки распространение вируса в организме пациента будет остановлено: ведь донорские клетки устойчивы к инфекции, поскольку не имеют рецепторов, позволяющих вирусу проникнуть через клеточную мембрану. Однако эту привлекательную идею вряд ли удастся воплотить в практику полностью. Дело в том, что иммунологические различия между пациентом и донором, как правило, приводят к отторжению пересаженной ткани, а иногда и к более серьезным последствиям, когда донорские клетки атакуют чужеродные для них клетки реципиента, вызывая их массовую гибель.

Словарик

Т-киллеры - иммунные клетки, которые уничтожают зараженные вирусом клетки.

Рецепторы клеток - особые молекулы на поверхности, которые служат "опознавательным знаком" для вирусных частиц и других клеток.

Ген рецептора - ген, ответственный за выработку соответствующего белка.

Хемокины - гормоноподобные вещества на поверхности иммунных клеток, которые подавляют размножение вируса в организме.

Культура клеток - клетки, развивающиеся вне организма, в питательной среде пробирки.

Мутантные гены - измененные гены, не способные контролировать выработку нужного белка.

Клетки-мишени - иммунные клетки, которые в первую очередь поражает вирус.

Цифры и факты

Сегодня в мире 29 миллионов зараженных вирусом иммунодефицита. 1,5 миллиона человек уже умерли от вызванного этим заражением СПИДа.

Самый неблагополучный по СПИДу регион - Африка. В Европе лидируют Испания, Италия, Франция, Германия. С 1997 года к этим странам присоединилась Россия. На территории бывшего СССР зараженность ВИЧ распределяется так: 70% - Украина, 18,2% - Россия, 5,4% - Беларусь, 1,9% - Молдова, 1,3% - Казахстан, остальные - менее 0,5%.

К 1 декабря 1997 года в России официально зарегистрировано около 7000 зараженных вирусом иммунодефицита, в основном при передаче инфекции половым путем.

В России и странах ближнего зарубежья существует более 80 центров по профилактике и борьбе со СПИДом.