Интернет Windows Android

Как измерить сопротивление усилителя. Основные технические характеристики усилителей

(О СНИЖЕНИИ ИНТЕРМОДУЛЯЦИОННЫХ ИСКАЖЕНИЙ И ПРИЗВУКОВ В ГРОМКОГОВОРИТЕЛЯХ)

Разницу в звучании громкоговорителей при работе с различными УМЗЧ, в первую очередь, замечают, сравнивая ламповые и транзисторные усилители: спектр их гармонических искажений часто существенно отличается. Иногда заметные отличия бывают и среди усилителей одной и той же группы. Например, в одном из аудиожурналов оценки, данные ламповым УМЗЧ мощностью 12 и 50 Вт, склонялись в пользу менее мощного. Или оценка была необъективной?

Как нам кажется, автор статьи доказательно объясняет одну из мистических причин возникновения в громкоговорителях переходных и интермодуляционных искажений, создающих заметную разницу в звучании при работе с различными УМЗЧ. Он предлагает также доступные методы существенного снижения искажений громкоговорителей, которые достаточно просто реализуются с применением современной элементной базы.

В настоящее время считается общепризнанным, что одним из требований к усилителю мощности является обеспечение неизменности его выходного напряжения при изменении сопротивления нагрузки. Иными словами, выходное сопротивление УМЗЧ должно быть невелико по сравнению с нагрузочным, составляя не более 1/10,1/1000 от модуля сопротивления (импеданса) нагрузки |Z н |. Эта точка зрения отражена в многочисленных стандартах и рекомендациях, а также в литературе. Специально введен даже такой параметр, как коэффициент демпфирования - K d (или демпинг-фактор), равный отношению номинального сопротивления нагрузки к выходному сопротивлению усилителя R вых УМ. Так, при номинальном сопротивлении нагрузки, равном 4 Ом, и выходном сопротивлении усилителя 0,05 Ом K d будет равен 80. Действующие ныне стандарты на аппаратуру HiFi требуют, чтобы значение коэффициента демпфирования у высококачественных усилителей было бы не менее 20 (а рекомендуется - не менее 100). Для большинства транзисторных усилителей, имеющихся в продаже, K d превышает 200.
Доводы в пользу малого R вых УМ (и соответственно высокого K d) общеизвестны: это обеспечение взаимозаменяемости усилителей и акустических систем, получение эффективного и предсказуемого демпфирования основного (низкочастотного) резонанса громкоговорителя, а также удобство измерения и сопоставления характеристик усилителей. Однако, несмотря на правомерность и обоснованность вышеприведенных соображений, вывод о необходимости такого соотношения, по мнению автора, принципиально ошибочен !

Всё дело в том, что этот вывод делается без учета физики работы электродинамических головок громкоговорителей (ГГ). Подавляющее большинство разработчиков усилителей искренне полагает, что всё, что от них требуется - это выдать напряжение требуемой величины на заданном сопротивлении нагрузки с возможно меньшими искажениями. Разработчики громкоговорителей, в свою очередь, вроде бы должны исходить из того, что их изделия будут питаться от усилителей с пренебрежимо малым выходным сопротивлением. Казалось бы, все просто и ясно - какие тут могут быть вопросы?

Тем не менее, вопросы, и очень серьёзные, имеются. Главным из них является вопрос о величине интермодуляционных искажений , вносимых ГГ при работе ее от усилителя с пренебрежимо малым внутренним сопротивлением (источника напряжения или источника ЭДС).

«Какое отношение к этому может иметь выходное сопротивление усилителя? Не морочьте мне голову!» - скажет читатель. - И ошибётся. Имеет, и самое прямое, несмотря на то, что факт этой зависимости упоминается крайне редко. Во всяком случае, не обнаружено современных работ, в которых бы рассматривалось это влияние на все параметры сквозного электроакустического тракта - от напряжения на входе усилителя до звуковых колебаний. При рассмотрении этой темы ранее почему-то ограничивались анализом поведения ГГ вблизи основного резонанса на нижних частотах, тогда как не менее интересное происходит на заметно более высоких частотах - на пару октав выше резонансной частоты.

Для восполнения этого пробела и предназначена эта статья. Надо сказать, что для повышения доступности изложение весьма упрощено и схематизировано, поэтому ряд «тонких» вопросов остался нерассмотренным. Итак, чтобы понять, как выходное сопротивление УМЗЧ влияет на интермодуляционные искажения в громкоговорителях, надо вспомнить, какова физика излучения звука диффузором ГГ.

Ниже частоты основного резонанса при подаче синусоидального напряжения сигнала на обмотку звуковой катушки ГГ амплитуда смещения её диффузора определяется упругим противодействием подвеса (или сжимаемого в закрытом ящике воздуха) и почти не зависит от частоты сигнала. Работа ГГ в этом режиме характеризуется большими искажениями и очень низкой отдачей полезного акустического сигнала (очень низким КПД).

На частоте основного резонанса масса диффузора вместе с колеблющейся массой воздуха и упругостью подвеса образуют колебательную систему, аналогичную грузику на пружинке. КПД излучения в этой области частот близок к максимальному для данной ГГ.

Выше частоты основного резонанса силы инерции диффузора вместе с колеблющейся массой воздуха оказываются большими, чем силы упругости подвеса, поэтому смещение диффузора оказывается обратно пропорциональным квадрату частоты. Однако ускорение диффузора при этом теоретически не зависит от частоты, что и обеспечивает равномерность АЧХ по звуковому давлению. Следовательно, для обеспечения равномерности АЧХ ГГ на частотах выше частоты основного резонанса к диффузору со стороны звуковой катушки необходимо прикладывать силу постоянной амплитуды, как это следует из второго закона Ньютона (F=m*a).

Сила же, действующая на диффузор со стороны звуковой катушки, пропорциональна току в ней. При подключении ГГ к источнику напряжения U ток I в звуковой катушке на каждой частоте определяется из закона Ома I(f)=U/Z г (f), где Z г (f) - зависящее от частоты комплексное сопротивление звуковой катушки. Оно определяется преимущественно тремя величинами: активным сопротивлением звуковой катушки R г (измеряемым омметром), индуктивностью L г. На ток влияет также и противо-ЭДС, возникающая при перемещении звуковой катушки в магнитном поле и пропорциональная скорости перемещения.

На частотах заметно выше основного резонанса величиной противо-ЭДС можно пренебречь, поскольку диффузор со звуковой катушкой просто не успевают разогнаться за половину периода частоты сигнала. Поэтому зависимость Z г (f) выше частоты основного резонанса определяется в основном величинами R г и L г

Так вот, ни сопротивление R г, ни индуктивность L г особым постоянством не отличаются. Сопротивление звуковой катушки сильно зависит от температуры (ТКС меди около +0,35%/ о С), а температура звуковой катушки малогабаритных среднечастотных ГГ при нормальной работе изменяется на величину в 30...50 о С и причем весьма быстро - за десятки миллисекунд и менее. Соответственно, сопротивление звуковой катушки, а следовательно, и ток через неё, и звуковое давление при неизменном приложенном напряжении изменяются на 10...15%, создавая интермодуляционные искажения соответствующей величины (в низкочастотных ГГ, тепловая инерционность которых велика, разогрев звуковой катушки вызывает эффект тепловой компрессии сигнала).

Изменения индуктивности ещё более сложны. Амплитуда и фаза тока через звуковую катушку на частотах заметно выше резонансной в значительной мере определяются величиной индуктивности. А она очень сильно зависит от положения звуковой катушки в зазоре: при нормальной амплитуде смещения для частот, лишь немногим больших, нежели частота основного резонанса, индуктивность изменяется на 15...40% у различных ГГ. Соответственно при номинальной мощности, подводимой к громкоговорителю, интермодуляционные искажения могут достигать 10...25%.

Сказанное выше иллюстрируется фотографией осциллограмм звукового давления, снятых на одной из лучших отечественных среднечастотных ГГ - 5ГДШ-5-4. Структурная схема измерительной установки приведена на рисунке.

В качестве источника двухтонального сигнала применены пара генераторов и два усилителя, между выходами которых подключена испытуемая ГГ, установленная на акустическом экране площадью около 1 м 2 . Два отдельных усилителя с большим запасом по мощности (400 Вт) использованы с целью избежать образования интермодуляционных искажений при прохождении двухтонового сигнала через усилительный тракт. Звуковое давление, развиваемое головкой, воспринималось ленточным электродинамическим микрофоном, нелинейные искажения которого составляют величину менее -66дБ при уровне звукового давления 130 дБ. Звуковое давление такого громкоговорителя в этом эксперименте составляло примерно 96 дБ, та что искажениями микрофона при данных условиях можно было пренебречь.

Как видно на осциллограммах на экране верхнего осциллографа (верхняя - без фильтрации, нижняя - после фильтрации ФВЧ), модуляция сигнала с частотой 4 кГц под воздействием другого с частотой 300 Гц (при мощности на головке 2,5 Вт) превышает 20%. Это соответствует величине интермодуляционных искажений около 15%. Думается, нет нужды напоминать о том, что порог заметности продуктов интермодуляционных искажений лежит намного ниже одного процента, достигая в ряде случаев сотых долей процента. Понятно, что искажения УМЗЧ, если только они имеют «мягкий» характер, и не превышают нескольких сотых процента, просто неразличимы на фоне искажений в громкоговорителе, вызванных его работой от источника напряжения. Интермодуляционные продукты искажений разрушают прозрачность и детальность звучания - получается «каша», в которой отдельные инструменты и голоса слышны лишь изредка. Этот тип звучания наверняка хорошо знаком читателям (хорошим тестом на искажения может служить фонограмма детского хора).

Знатоки могут возразить, что для уменьшения непостоянства импеданса звуковой катушки существует множество способов: это и заполнение зазора охлаждающей магнитной жидкостью, и установка медных колпачков на керны магнитной системы, и тщательный подбор профиля керна и плотности намотки катушки, а также многое другое. Однако все эти методы, во-первых, не решают проблему в принципе, а во-вторых, ведут к усложнению и удорожанию производства ГГ, вследствие чего не находят полного применения даже в студийных громкоговорителях. Именно поэтому большинство среднечастотных и низкочастотных ГГ не имеет ни медных колпачков, ни магнитной жидкости (в таких ГГ при работе на полной мощности жидкость нередко выбрасывается из зазора).

Следовательно, питание ГГ от высокоомного источника сигнала (в пределе - от источника тока) является полезным и целесообразным способом снижения их интермодуляционных искажений, особенно при построении многополосных активных акустических систем. Демпфирование основного резонанса при этом приходится выполнять чисто акустическим путем, поскольку собственная акустическая добротность среднечастотных ГГ, как правило, значительно превышает единицу, достигая 4...8.

Любопытно, что именно такой режим «токового» питания ГГ имеет место в ламповых УМЗЧ с пентодным или тетродным выходом при неглубокой (менее 10 дБ) ООС, особенно при наличии местной ООС по току в виде сопротивления в цепи катода.

В процессе налаживания такого усилителя его искажения без общей ООС обычно оказываются в пределах 2,5% и уверенно заметны на слух при включении в разрыв контрольного тракта (метод сравнения с «прямым проводом»). Однако после подключения усилителя к громкоговорителю обнаруживается, что по мере увеличения глубины обратной связи звучание сначала улучшается, а затем происходит потеря его детальности и прозрачности. Особенно четко это заметно в многополосном усилителе, выходные каскады которого работают непосредственно на соответствующие головки громкоговорителей без каких-либо фильтров.

Причина этого, на первый взгляд, парадоксального явления в том, что при увеличении глубины ООС по напряжению выходное сопротивление усилителя резко снижается. Негативные последствия питания ГГ от УМЗЧ с малым выходным сопротивлением рассмотрены выше. В триодном усилителе выходное сопротивление, как правило, намного меньше, чем в пентодном или тетродном, а линейность до введения ООС выше, поэтому введение ООС по напряжению улучшает работу отдельно взятого усилителя, но вместе с тем ещё более ухудшает работу головки громкоговорителя. Как следствие, в результате введения ООС по выходному напряжению в триодный усилитель звук, действительно, может становиться хуже, несмотря на улучшение характеристик собственно усилителя! Этот эмпирически установленный факт служит неиссякаемой пищей для спекуляций на тему вреда от применения обратных связей в звуковых усилителях мощности, а также рассуждений об особой, ламповой прозрачности и естественности звучания. Однако из вышерассмотренных фактов со всей очевидностью следует, что дело не в наличии (или отсутствии) самой по себе ООС, а в результирующем выходном сопротивлении усилителя. Вот где «собака зарыта»!

Стоит сказать несколько слов об использовании отрицательного выходного сопротивления УМЗЧ. Да, положительная обратная связь (ПОС) по току помогает задемпфировать ГГ на частоте основного резонанса и уменьшить мощность, рассеиваемую на звуковой катушке. Однако за простоту и эффективность демпфирования приходится платить возрастанием влияния индуктивности ГГ на её характеристики, даже по сравнению с режимом работы от источника напряжения. Это вызвано тем, что постоянная времени L г /R г заменяется на большую, равную L г /. Соответственно понижается частота, начиная с которой в сумме импедансов системы «ГГ + УМЗЧ» начинает доминировать индуктивное сопротивление. Аналогично увеличивается и влияние тепловых изменений активного сопротивления звуковой катушки: сумма изменяющегося сопротивления звуковой катушки и неизменного отрицательного выходного сопротивления усилителя в процентном отношении изменяется сильнее.

Конечно, если R вых. УМ по абсолютной величине не превышает 1/3...1/5 от активного сопротивления обмотки звуковой катушки, потеря от введения ПОС невелика. Поэтому слабую ПОС по току для небольшого дополнительного демпфирования или для точной подстройки добротности в низкочастотной полосе применять можно. Кроме того, ПОС по току и режим источника тока в УМЗЧ не совместимы между собой, вследствие чего токовое питание ГГ в низкочастотной полосе, к сожалению, оказывается не всегда применимым.

С интермодуляционными искажениями мы, видимо, разобрались. Теперь осталось рассмотреть второй вопрос - величину и длительность призвуков, возникающих в диффузоре ГГ при воспроизведении сигналов импульсного характера. Этот вопрос гораздо сложнее и «тоньше».

Для исключения этих призвуков теоретически есть две возможности. Первая - это сдвинуть все резонансные частоты за пределы рабочего диапазона частот, в область далекого ультразвука (50...100 кГц). Этим способом пользуются при разработке маломощных высокочастотных ГГ и некоторых измерительных микрофонов. Применительно к ГГ - это способ «жесткого» диффузора.

Так вот, возможен и третий вариант - использование ГГ с относительно «жестким» диффузором и введение её акустического демпфирования. В этом случае удается в некоторой мере совместить достоинства обоих подходов. Именно таким образом чаще всего строятся студийные контрольные громкоговорители (большие мониторы). Естественно, что при питании демпфированной ГГ от источника напряжения из-за резкого падения полной добротности основного резонанса существенно искажается АЧХ. Источник тока в этом случае также оказывается предпочтительнее, поскольку способствует выравниванию АЧХ одновременно с исключением эффекта термической компрессии.

Обобщая вышеизложенное, можно сделать следующие практические выводы:

1. Режим работы головки громкоговорителя от источника тока (в противоположность источнику напряжения) обеспечивает существенное снижение интермодуляционных искажений, вносимых самой головкой.

2. Наиболее целесообразный вариант конструкции громкоговорителя с низкими интермодуляционными искажениями - активный многополосный, с разделительным фильтром (кроссовером) и отдельными усилителями на каждую полосу. Впрочем, этот вывод справедлив независимо от режима питания ГГ.

4. С целью получения высокого выходного сопротивления усилителя и сохранения малой величины его искажений следует применять ООС не по напряжению, а по току.

Конечно, автор понимает, что предлагаемый метод снижения искажений не является панацеей. Кроме того, в случае использования готового многополосного громкоговорителя осуществление токового питания его отдельных ГГ без переделки невозможна. Попытка же подключения многополосного громкоговорителя в целом к усилителю с повышенным выходным сопротивлением приведёт не столько к снижению искажений, сколько к резкому искажению АЧХ и соответственно, сбою тонального баланса. Тем не менее снижение интермодуляционных искажений ГГ почти на порядок , причем столь доступным методом, явно заслуживает достойного внимания.

С.АГЕЕВ, г. Москва

2014-02-10T19:57

2014-02-10T19:57

Audiophile"s Software

ПРОЛОГ : Выходной импеданс выхода под наушники является одной из самых распространенных причин, почему одни и те же наушники могут звучать по-разному в зависимости от того, куда они включены. Этот важный параметр редко указывается производителями, но в то же время может послужить причиной существенных различий в качестве звучания и в значительной степени повлиять на совместимость наушников.

ВКРАТЦЕ: Всё, что вам действительно надо знать, это что большинство наушников лучше всего работают, если выходной импеданс устройства менее 1/8 импеданса наушников. Так, для примера, для 32-омных Grados выходной импеданс должен быть максимум 32/8 = 4 Ом. Etymotic HF5 - 16-омные, потому максимальный выходной импеданс должен быть равен 16/8 = 2 Ом. Если вы хотите быт уверены, что источник будет работать с любыми наушниками, удостоверьтесь, что его выходной импеданс менее 2 Ом.

ПОЧЕМУ ВЫХОДНОЙ ИМПЕДАНС ТАК ВАЖЕН? Как минимум по трем причинам:

  • Чем больше выходной импеданс, тем больше падение напряжения при меньших импедансах нагрузки. Это падение может быть достаточно большим, чтобы помешать «раскачать» низкоомные наушники до нужного уровня громкости. В качестве примера можно привести Behringer UCA202 с выходным импедансом 50 Ом. Он сильно проигрывает в качестве при использовании 16 - 32-омных наушников.
  • Импеданс наушников зависит от частоты. Если выходной импеданс намного больше нуля, это значит, что напряжение, падающее на наушниках, также будет изменяться с частотой. Чем больше выходной импеданс, тем больше неравномерность частотной характеристики . Разные наушники будут взаимодействовать по-разному (причем обычно непредсказуемо) с разными источниками. Иногда эти различия могут быть значительными и вполне ощутимыми на слух.
  • По мере того, как выходной импеданс увеличивается, уменьшается коэффициент демпфирования . Уровень басов, который рассчитывался для наушников при проектировании, при недостаточном демпфировании может существенно снизиться. Низкие частоты будут более гудящими и не такими четкими (размазанными). Переходная характеристика ухудшается, при этом страдает глубина басов (больше спад на низких частотах). Некоторым людям, вроде тех, кому нравится «теплый ламповый звук», такой недодемпфированный бас может даже прийтись по вкусу. Но в абсолютном большинстве случаев это даёт менее честный звук, чем при использовании низкоомного источника.

ПРАВИЛО ОДНОЙ ВОСЬМОЙ: Для минимизации каждого из вышеописанных эффектов необходимо всего лишь обеспечить выходной импеданс хотя бы в 8 раз меньший, чем импеданс наушников. Еще проще: поделите импеданс наушников на 8 и получите максимальный импеданс усилителя, позволяющий избежать слышимых искажений.

ЕСТЬ ЛИ КАКОЙ-ТО СТАНДАРТ ДЛЯ ВЫХОДНОГО ИМПЕДАНСА? Единственный такой стандарт, который я знаю - IEC 61938 (1996 г.). Он устанавливает требование к выходному импедансу в 120 Ом. Есть несколько причин, почему эти требования устарели, и вообще не являются хорошей идеей. В статье Stereophile о стандартном значении 120 Ом говорится буквально следующее:

«Кто бы это не написал, он явно живет в мире грез»

Должен согласиться. Возможно, значение в 120 Ом еще было приемлемо (и то, едва ли) до появления iPod и до того, как портативные устройства вообще обрели широкую популярность, но не более. Сегодня большая часть наушников разработана совершенно иначе.

ПСЕВДО-СТАНДАРТЫ: выходы под наушники большинства профессиональных установок имеют сопротивление 20 - 50 Ом. Не знаю ни одной, которая бы соответствовала 120 Ом, как в стандарте МЭК. Для оборудование потребительского класса значение выходного импеданса обычно лежит в пределах 0 - 20 Ом. За исключением некоторых ламповых и других эзотерических разработок, большая часть аудиофильского high-end оборудования имеет импеданс ниже 2 Ом.

ВЛИЯНИЕ iPOD: С тех пор, как в 1996-м было опубликован 120-омный стандарт, от низкокачественных кассетных плееров, через портативные CD-плееры, мы наконец перешли к повальному увлечению iPod"ами. Apple помогла сделать высокое качество портативным, и сейчас мы имеем в обороте как минимум полмиллиарда цифровых плееров, не считая телефоны. Практически все портативные музыкальные/медиа-плееры работают от одинарных аккумуляторных литий-ионных батарей. Эти батареи вырабатывают напряжение чуть более 3 вольт, что обычно даёт около 1 вольт (RMS) на выходе под наушники (иногда менее). Если вы поставите на выход сопротивление 120 Ом и воспользуетесь обычными портативными наушниками (сопротивление которых лежит в пределе 16 - 32 Ом), громкость воспроизведения скорей всего будет недостаточной. Кроме того, большая часть энергии батареи будет рассеиваться в виде тепла на 120-омном резисторе. Лишь малая часть мощности будет приходиться на наушники. Это серьезная проблема для портативных устройств, где очень важно продлить время работы аккумулятора. Более эффективным было бы подавать всю мощность на наушники.

КОНСТРУКЦИЯ НАУШНИКОВ: Так для какого же выходного импеданса компании-производители разрабатывают свои наушники? По состоянию на 2009 год было продано более 220 миллионов iPod"ов. iPod и аналогичные портативные плееры на рынке наушников подобны 800-фунтовым гориллам. Потому не удивительно, что большинство разработчиков стали создавать наушники таким образом, чтобы они были хорошо совместимы с iPod. Это значит, что они рассчитаны на работу с выходным импедансом менее 10 Ом. А практически все хай-эндовые полноразмерные наушники рассчитаны на источники, соблюдающие правило 1/8, или же имеющие импеданс близкий к нулю. Мне ни разу не встречались аудиофильские наушники предназначенные для домашнего использования, разработанные в соответствии с древним 120-омным стандартом.

ЛУЧШИЕ НАУШНИКИ ДЛЯ ЛУЧШИХ ИСТОЧНИКОВ: Если вы бегло ознакомитесь с наиболее обозреваемыми high-end усилителями для наушников и ЦАП"ами, вы обнаружите, что практически все они обладают очень низким выходным импедансом. Примерами являются продукты Grace Designs, Benchmark Media, HeadAmp, HeadRoom, Violectric, etc. Само собой, что большинство high-end наушников лучше всего проявляют себя в сочетании с такого же класса оборудованием. Некоторые из наиболее хорошо зарекомендовавших себя наушников изначально имеют низкий импеданс, включая различные модели от Denon, AKG, Etymotic, Ultimate Ears, Westone, HiFiMAN и Audeze. Все они, насколько я знаю, были разработаны для использования в сочетании с источником, имеющим низкий (в идеале нулевой) импеданс. Также и представитель Sennheiser сказал мне, что они разрабатывают свои аудиофильские и портативные наушники для источников с нулевым импедансом.

ВОПРОС АЧХ: Если выходной импеданс больше 1/8 импеданса наушников, будет наблюдаться неравномерность частотной характеристики. Для некоторых наушников, особенно арматурных (сбалансированный якорь) или мульти-драйверных, эти различия могут быть колоссальными. Вот, как 43 Ом выходного импеданса влияют на АЧХ Ultimate Ears SuperFi 5 - вполне ощутимая неравномерность в 12 дБ:

ВЫХОДНОЙ ИМПЕДАНС 10 ОМ: Кое-кто может взглянуть на пример выше и подумать, что такие значительные отличия проявляются лишь при сопротивлении в 43 Ом. Но множество источников имеет импеданс около 10 Ом. Вот те же наушники с 10-омным источником - все еще отчетливо слышимая неравномерность в 6 дБ. Такая кривая приводит к ослаблению басов, выраженному акценту на средних частотах, приглушенным высоким и нечеткой фазовой характеристике из-за резкого провала на 10 кГц, что может повлиять на стерео-панораму.

ПОЛНОРАЗМЕРНЫЕ SENNHEISER: Вот полноразмерные Sennheiser HD590 c повышенным импедансом, с тем же 10-омным источником. Теперь неравномерность выше 20 Гц лишь немногим более 1 дБ. Хотя 1 дБ - это не так уж много, неравномерность находится в области «гудящих» низов, где любой акцент крайне нежелателен:

КАК РАБОТАЕТ ДЕМПФИРОВАНИЕ: любая динамическая головка, будь то наушники или колонки, перемещается взад и вперед по мере воспроизведения музыки. Таким образом они создают звуковые колебания, представляя собой движущуюся массу. Законы физики гласят, что движущийся объект склонен оставаться в движении (т.е. обладает инерцией). Демпфирование же помогает избежать нежелательных перемещений. Если слишком не вдаваться в детали, недодемпфированный динамик продолжает двигаться тогда, когда он уже должен остановиться. Если же динамик передемпфирован (такое бывает редко), его возможности перемещаться соответственно подаваемому сигналу ограничены - представьте, что динамик пытается работать погруженным в кленовый сироп. Всего есть два способа демпфирования динамика - механический и электрический.

ПРЫГАЮЩИЕ ТАЧКИ: Механическое демпфирование подобно амортизаторам автомобиля. Они вносят сопротивление, потому если вы качнете машину, она не будет долго раскачиваться вверх-вниз. Но амортизация также добавляет жесткость, потому что не позволяет подвеске менять своё положение в полном соответствии с рельефом дороги. Потому здесь приходится искать компромисс: мягкие амортизаторы делают поездку более мягкой, но приводят к покачиванию, жесткие же делают поездку менее комфортной, но предотвращают раскачивание. Механическое демпфирование - это всегда компромисс.

ЭЛЕКТРИЧЕСКОЕ СОВЕРШЕННЕЕ: Есть лучший способ контролировать нежелательное перемещение диффузора, называется он электрическим демпфированием . Катушка и магнит в динамике взаимодействуют с усилителем для контроля перемещения диффузора. Этот тип демпфирования имеет меньше побочных эффектов и позволяет разработчикам создавать наушники с меньшим уровнем искажений и лучшим звучанием. Как подвеска автомобиля, способная более точно подстраиваться под рельеф дороги, оптимально демпфированные наушники могут точнее воспроизводить аудио сигнал. Но, и это критический момент, электрическое демпфирование эффективно лишь тогда, когда выходной импеданс усилителя намного меньше импеданса наушников . Если вы включите 16-омные наушники в усилитель с выходным импедансом 50 Ом, электрическое демпфирование сойдет на нет. Это значит, что динамик не остановится в тот момент, когда он должен остановиться. Это похоже на автомобиль с изношенными амортизаторами. Конечно же, если правило 1/8 соблюдено, электрическое демпфирование будет достаточным.

АКУСТИЧЕСКАЯ ПОДВЕСКА: В 70-х ситуация изменилась, так как популярными стали транзисторные усилители. Практически во всех транзисторных усилителях соблюдается правило 1/8. Фактически большинство соответствует правилу 1/50 - их выходной импеданс меньше 0.16 Ом, что даёт коэффициент демпфирования 50. Таким образом производители динамиков получили возможность разрабатывать более качественные динамики, использующие преимущества низкого выходного импеданса. Прежде всего были разработаны первые закрытые динамики с акустической подвеской от Acoustic Research, Large Advents, и др. Они обладали более глубоким и точным басом, чем у аналогичных по размеру предшественников, рассчитанных на ламповые усилители. Это было большим прорывом в области hi-fi - благодаря новым усилителям теперь можно было в значительной мере полагаться на электрическое демпфирование. И очень жаль, что столь многие источники сегодня отстают от жизни на 40 и более лет.

КАКОЙ ВЫХОДНОЙ ИМПЕДАНС У МОЕГО УСТРОЙСТВА? Некоторые разработчики дают понять, что они стремятся максимально снизить выходной импеданс (как, например, Benchmark), в то время как другие указывают для своих продуктов его фактическое значение (например, 50 Ом для Behringer UCA202). Большинство же, к сожалению, оставляют это значение загадкой. Некоторые обзоры оборудования (например, в этом блоге) включают измерение выходного импеданса, так как от него в значительной мере зависит, как будет звучать устройство с теми или иными наушниками.

ПОЧЕМУ ТАКОЕ БОЛЬШОЕ КОЛИЧЕСТВО ИСТОЧНИКОВ ИМЕЕТ ВЫСОКИЙ ВЫХОДНОЙ ИМПЕДАНС? Наиболее распространенные причины следующие:

  • Защита наушников - Более мощные источники с низким выходным импедансом зачастую способны подать слишком большую мощность на низкоомные наушники. Дабы защитить такие наушники от повреждения, некоторые разработчики увеличивают выходной импеданс. Таким образом это компромисс, адаптирующий усилитель к нагрузке, но ценой ухудшения параметров для большинства наушников . Лучшее решение - возможность выбора двух уровней усиления. Низкий уровень позволяет установить меньше выходное напряжение для наушников с низким импедансом. Также в добавок может использоваться ограничение по току, таким образом источник будет автоматически ограничивать ток для низкоомных наушников, даже если установлен слишком большой уровень усиления.
  • Чтобы отличаться - Некоторые разработчики специально завышают выходной импеданс, утверждая, что это улучшает звучание их устройства. Иногда это используется как способ сделать звучание продукта отличным от звучания конкурирующих продуктов. Но в таком случае каждое «отдельное звучание», которое вы получаете, полностью зависит от используемых наушников. Для некоторых наушников это воспринимается как улучшение, с другими же скорей как значительное ухудшение. Наиболее вероятно, что звучание в значительной мере исказится.
  • Это дешево - Более высокий выходной импеданс является наиболее простым решением для дешевых источников. Это дешевый способ достижения стабильности, простейшая защита от короткого замыкания; также это позволяет использовать менее качественные операционные усилители, которые в противном случае напрямую не смогли бы раскачать даже 16 или 32-омные наушники. Путем последовательного подключения к выходу некоторого сопротивления, все эти проблемы решаются ценой в какой-то цент. Но за это дешевое решение приходится платить значительным ухудшением качества звучания на многих моделях наушников.

ИСКЛЮЧЕНИЯ ИЗ ПРАВИЛ: Существует несколько наушников, якобы предназначенных для использования с высоким выходным импедансом. Лично мне интересно, миф это или реальность, так как я не знаю ни одного конкретного примера. Впрочем, это возможно. В таком случае использование этих наушников с низкоомным источником может привести к передемпфированной динамике басов и, как следствие, к отличной от планируемой разработчиком АЧХ. Этим могут объясняться отдельные случаи «синергии», когда определенные наушники сочетаются с определенным источником. Но этот эффект воспринимается сугубо субъективно - для кого-то как выразительность и детальность звучания, для кого-то - как излишняя жесткость. Единственный способ добиться адекватной работы - использовать низкоомный источник и соблюдать правило 1/8.

КАК НЕДОРОГО ПРОВЕРИТЬ: Если вас интересует, не страдает ли качество звучания из-за выходного импеданса источника, могу предложить приобрести за 19$ усилитель FiiO E5 . Он оснащен выходом с практически нулевым импедансом и его будет достаточно для большей части наушников с импедансом

ИТОГО: Если только вы не абсолютно уверены, что ваши наушники звучат лучше с каким-то определенным более высоким выходным импедансом, лучше всегда использовать источники с импедансом не более 1/8 от импеданса ваших наушников. Или еще проще: с импедансом не более 2 Ом.

ТЕХНИЧЕСКАЯ ЧАСТЬ

ИМПЕДАНС И СОПРОТИВЛЕНИЕ: Эти два термина в некоторых случаях взаимозаменяемы, но технически они имеют значительные отличия. Электрическое сопротивление обозначается буквой R и имеет одинаковое значение для всех частот. Электрический импеданс - величина более сложная, и его значение обычно меняется с частотой. Он обозначается буковой Z . В рамках данной статьи единицы измерения обоих величин - Омы .

НАПРЯЖЕНИЕ И ТОК: Чтобы понять, что такое импеданс, и о чем вообще идет речь в этой статье, важно иметь хотя бы общее представление о напряжении и токе. Напряжение подобно давлению воды, в то время как ток является аналогом потока воды (например, литров в минуту). Если вы пустите воду из своего садового шланга, не прикрепив ничего к его концу, вы получите большой поток воды (ток) и сможете быстро наполнить ведро, но давление вблизи конца шланга будет практически равняться нулю. Если вы воспользуетесь небольшой насадкой на шланг, давление (напряжение) будет значительно большим, а поток воды при этом уменьшится (понадобится больше времени, чтобы наполнить то же самое ведро). Эти два значения связаны обратной зависимостью. Взаимосвязь между напряжением, током и сопротивлением (а также импедансом, в рамках данной статьи) определяется Законом Ома. R можно заменить на Z.

ОТКУДА ВЗЯЛОСЬ ПРАВИЛО 1/8?: Минимальные слышимые отличия громкости, которые воспринимаются человеком - около 1 дБ. Падение в -1 дБ на выходном импедансе соответствует коэффициенту, 10^(-1/20) = 0.89 . Используя формулу делителя напряжения, мы получим, что когда выходной импеданс равен 1/8 импеданса нагрузки, коэффициент как раз равен 0.89, т. е. падение напряжения составляет -1 дБ. Импеданс наушников может меняться в пределах полосы звуковых частот в 10 или более раз. Для SuperFi 5 указан импеданс 21 Ом, но фактически он изменяется от 10 до 90 Ом. Таким образом правило 1/8 даёт нам значение максимального выходного импеданса 2.6 Ом. Если принять напряжение источника равным 1 В:

  • Напряжение на наушниках при импедансе 21 Ом (номинальный) = 21 / (21+2.6) = 0.89 В
  • Напряжение на наушниках при импедансе 10 Ом (минимальный) = 10 / (10+2.6) = 0.79 В
  • Напряжение на наушниках при импедансе 90 Ом (максимальный) = 90 / (90+2.6) = 0.97 В
  • Неравномерность АЧХ = 20*log(0.97/0.89) = 0.75 дБ (менее 1 дБ)

ИЗМЕРЕНИЕ ВЫХОДНОГО ИМПЕДАНСА: Как видно из принципиальной схемы выше, выходное сопротивление формирует делитель напряжения. Измерив выходное напряжение без подключения нагрузки и с известной нагрузкой, вы сможете рассчитать выходной импеданс. Это можно легко сделать с помощью онлайн калькулятора . Напряжение без нагрузки - это «Input Voltage», R2 - это известное сопротивление нагрузки (не используйте в данном случае наушники), «Output Voltage» - напряжение при подключении нагрузки. Нажмите Compute, и получите искомый выходной импеданс R1. Также это можно сделать с помощью 60-герцовой синусоиды (её можно сгенерировать, например, в Audacity), цифрового мультиметра и 15 - 33-омного резистора. Большинство цифровых мультиметров имеют хорошую точность лишь вблизи частоты 60 Гц. Воспроизведите 60 Гц синусоиду и отрегулируете громкость таким образом, чтобы выходное напряжение было равно примерно 0.5 В. Затем подключите резистор и зафиксируйте новое значение напряжения. Например, если вы получили 0.5 В без нагрузки и 0.38 В с нагрузкой 33 Ом, выходной импеданс равен примерно 10 Ом. Формула здесь следующая: Zист = (Rн * (Vхх - Vн)) / Vн. Vхх - напряжение без нагрузки (холостой ход).

Ни одни наушники не обладают полностью резистивным сопротивлением, не изменяющимся в пределах диапазона звуковых частот. Абсолютное большинство наушников представляют собой реактивное сопротивление и обладают комплексным импедансом . Из-за емкостных и индуктивных составляющих импеданса наушников его значение меняется с частотой. Например, вот зависимость импеданса (желтым) и фазы (белым) от частоты для Super Fi 5. Ниже ~200 Гц импеданс равен всего 21 Ом. Выше 200 Гц он возрастает до ~90 Ом к 1200 Гц, а затем спадает до 10 Ом к 10 кГц:

ПОЛНОРАЗМЕРНЫЕ НАУШНИКИ: Возможно, кого-то не интересуют внутриканальные наушники вроде Super Fi 5, так что вот импеданс и фаза для популярной модели Sennheiser HD590. Импеданс всё так же варьируется: от 95 до 200 Ом - практически в два раза:

МАТЧАСТЬ: Один из графиков в начале статьи демонстрировал неравномерность АЧХ около 12 дБ для SuperFi 5, подключенных к источнику с импедансом 43 Ом. Если мы примем номинальное значение 21 Ом за опорное, а выходное напряжение источника примем равным 1 В, уровень напряжения на наушниках будет следующим:

  • Опорный уровень: 21 / (43 + 21) = 0.33 В - что соответствует 0 дБ
  • При минимальном импедансе 9 Ом: 9 / (9 + 43) = 0.17 В = -5.6 дБ
  • При максимальном импедансе 90 Ом: 90 / (90 + 43) = 0.68 В = +6.2 дБ
  • Диапазон изменения = 6.2 + 5.6 = 11.8 дБ

УРОВНИ ДЕМПФИРОВАНИЯ: Демпфирование динамиков, как пояснялось ранее, может быть либо чисто механическим (Qms), либо складываться из электрического (Qes) и механического демпфирования. Суммарное демпфирование обозначается Qts. Как эти параметры взаимодействуют на низких частотах - объясняется моделированием Тиля - Смолла . Уровни демпфирования можно подразделить на три категории:

  • Критическое демпфирование (Qts = 0.7) - Многие считают его идеальным случаем, так как оно обеспечивает наиболее глубокие НЧ, без каких-либо отклонений АЧХ или чрезмерного звона (неконтролируемых перемещений диффузора). Бас такого динамика обычно воспринимается как «упругий»,«четкий» и «прозрачный». Большинство считает, что Qts 0.7 обеспечивает идеальную переходную характеристику.
  • Избыточное демпфирование (Qts
  • Слабое демпфирование (Qts > 0.7) - Позволяет получить некоторое усиление НЧ с пиком в верхней части НЧ диапазона. Динамик контролируется не полностью, что приводит к чрезмерному «звону» (т.е. диффузор недостаточно быстро прекращает своё движение после затухания электрического сигнала). Слабое демпфирование приводит к отклонениям АЧХ, менее глубоким басам , плохой переходной характеристике и подъему АЧХ в области верхней границы НЧ. Слабое демпфирование - это дешевый способ поднять уровень басов ценой их качества. Этот прием активно используется в дешевых наушниках, дабы создать «поддельные басы». Звучание недодемпфироанных динамиков часто характеризуется как «гулкий» или «небрежный» бас. Если ваши наушники рассчитаны на электрическое демпфирование, и вы будете использовать их с источником, имеющим импеданс более 1/8 импеданса наушников, вы получите именно такие, недодемпфированные НЧ .

ТИПЫ ДЕМПФИРОВАНИЯ: Есть три способа демпфирования динамиков / контроля резонанса:

  • Электрическое демпфирование - Уже известное нам Qes, оно подобно рекуперативному торможению в гибридных электромобилях. Когда вы жмете на тормоза, электромотор замедляет движение машины, превращаясь в генератор и передавая энергию обратно батареям. Динамик способен выполнять то же самое. Но если выходной импеданс усилителя увеличивается, эффект торможения значительно снижается - отсюда и правило 1/8.
  • Механическое демпфирование - Известное как Qms, оно скорей подобно автомобильным амортизаторам. По мере того, как вы увеличиваете механическое демпфирование динамика, оно ограничивает управлющий им музыкальный сигнал, что приводит к большей нелинейности. Это увеличивает искажения и снижает качество звучания.
  • Демпфирование за счет корпуса - Корпус может обеспечить демпфирование, но при этом требуется, чтоб он был закрытым - либо с правильно настроенным фазоинвертором, либо с контролируемым ограничением. Множество топовых наушников конечно же являются открытыми, что исключает возможность использования демпфирования за счет корпуса, как в акустических колонках.

УРОВЕНЬ ПРИЖИМА: Для наушников, которые имеют достаточно плотную посадку, вроде полноразмерных охватывающих с плотно прилегающими амбушюрами, разработчик могут учитывать возможность некоторого дополнительного демпфирования за счет ушной раковины. Но форма головы, ушей, прическа, посадка наушников, наличие очков и другие факторы делают этот эффект практически непредсказуемым. Для накладных наушников эта возможность отсутствует вообще. Ниже вы видите два графика, изображающих импеданс Sennheiser HD650. Обратите внимание: резонансный пик на НЧ в открытом виде имеет уровень 530 Ом, но при использовании искусственной головы значение снижается до 500 Ом. Причиной этого является демпфирование за счет закрытого пространства, образованного ушной раковиной и амбушюрами.

ЗАКЛЮЧЕНИЕ: Надеюсь, теперь понятно, что единственным путем достижения эффективной работы связки наушники-усилитель является соблюдение правила 1/8. Хоть кое-кто и предпочитает звучание при более высоком выходном импедансе, оно в крайней степени зависит от используемой модели наушников, значения выходного импеданса и личных предпочтений. В идеале - следовало бы создать новый стандарт, в соответствии с которым разработчики должны были бы выпускать источники с выходным импедансом менее 2 Ом.

Информация от спонсора

KUPI.TUT.BY: удобный каталог ноутбуков, ноутбуки цены . Здесь Вы можете подобрать и купить ноутбук по низкой цене. Удобство оплаты, доставка, гарантия качества.

Оригинал статьи на английском: Headphone & Amp Impedance

Почему так важно значение выходного импеданса источника (усилителя), как он взаимодействует с наушниками и на что влияет.

Copyright Taras Kovrijenko 2009–2019

Выходное сопротивление можно определить двумя способами.

1) Отключить сопротивление нагрузки. Замкнуть активный источник входного сигнала. Подвести к выходным зажимам усилителя переменное напряжение . Рассчитать переменный ток , потребляемый от источника . Определить выходное сопротивление усилителя . Схема замещения усилителя, реализующая этот способ, приведена на рис.2.11.

Рисунок 2.11 - Схема замещения усилителя, для расчета R Вых

2) Определение выходного сопротивления по нагрузочной характеристике.

Выходную цепь усилителя можно представить следующей моделью, в которой выходная цепь транзистора представлена источником ЭДС (Рис. 2.12).

Рисунок 2.12 - Схема замещения выходной цепи усилителя

Нагрузочная характеристика усилителя, определяется зависимостью напряжения на нагрузке от тока нагрузки, будет иметь вид, приведенный на рис.2.13.

Рисунок 2.13 - Нагрузочная характеристика усилителя

Для выходной цепи усилителя в режимах холостого хода (R Н =¥) и короткого замыкания (R Н =0) определим значения U Нхх и I КЗ :

Из нагрузочной характеристики следует, что выходное сопротивление усилителя:

При условии, что , можно записать: .

Следовательно, результаты определения выходного сопротивления, полученные первым и вторым способами, одинаковы.

Поскольку входное и выходное сопротивления схемы с ОЭ соизмеримы, то возможно последовательное включение каскадов усилителей с ОЭ при их удовлетворительном согласовании. Так, например, для двухкаскадного усилителя с коэффициентами усиления К 1 и К 2 и равенством R Вых1 =R Вх2 , получим общий коэффициент усиления усилителя .

Выводы:

Схема усилителя напряжения (ОЭ) имеет примерно равные входное и выходное сопротивления, что позволяет согласовывать по напряжению входное сопротивление последующего каскада с выходным сопротивлением предыдущего при их последовательном включении в многокаскадных усилителях. Схема с ОБ не позволяет выполнять такое включение, так как . Для последовательного включения каскадов с ОБ между ними необходимо включать согласующие каскады, которые строятся по схеме с ОК (см. разд.2.3).

Коэффициенты усиления схем с ОЭ и ОБ по напряжению K U >>1 (десятки) и отличаются лишь фазовыми соотношениями j ОЭ =180°, j ОБ =0°.

Коэффициенты усиления по току для схемы с ОЭ (K I >>1), а для схемы с ОБ (K I <1). Поскольку коэффициент усиления по мощности K P =K U ×K I , то схема с ОЭ имеет наибольший коэффициент.

Схема усилителя напряжения с ОЭ находит более широкое применение в электронике, однако схема с ОБ, несмотря на ряд указанных недостатков, используется в соответствии со своими преимуществами. К ним следует отнести наиболее высокую температурную стабильность и меньшие нелинейные искажения (см. разд. 5).


8 ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ RC-УСИЛИТЕЛЕЙ
ЗВУКОВЫХ ЧАСТОТ