Интернет Windows Android

Презентация измерительных приборов гимназия 1567. Электроизмерительные приборы

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Аналоговыми измерительными приборами называют приборы, показания которых являются непрерывной функцией изменений измеряемой величины.

3 слайд

Описание слайда:

Аналоговый электроизмерительный прибор - это, в первую очередь, показывающий прибор, т. е. прибор, допускающий отсчитывание показаний. Для этого у всех аналоговых электроизмерительных приборов, независимо от назначения и от разновидности применяемого в нем измерительного механизма любой прибор содержит общие для всех аналоговых приборов узлы и элементы: отсчетное устройство, состоящее из шкалы, расположенной на циферблате прибора, и указателя устройства по созданию противодействующего и успокаивающего моментов опорное устройство.

4 слайд

Описание слайда:

Измерительная цепь Измерительный механизм Отсчетное устройство Измерительная цепь является преобразователем из­меряемой величины х в некоторую промежуточную электрическую величину у (ток, напряжение), функционально связанную с измеряемой величиной х, т. е. y=f1(x). Электрическая величина у, которой является ток или напряжение, непосредственно воздействует на измерительный механизм (входная величина механизма). Измерительная цепь содержит в себе сопротивления, индуктивности, емкости и другие элементы. Измерительный механизм является преобразователем подведенной к нему электрической энергии в механическую энергию, необходимую для перемещения его подвижной части относительно неподвижной, т. е. α = f2(y). Входные величины создают механические силы, действующие на подвижную часть. Обычно в механизмах подвижная часть может только поворачиваться вокруг оси, поэтому механические силы, действующие на меха­низм, создают момент М. Этот момент называется вращающим моментом М=Wм /α., где Wм – энергия магнитного поля Отсчётное устройство - указатель (стрелка), перо, жёстко связанное с подвижной частью измерительного механизма и неподвижной шкалой (бумажным носителем, совмещающим функции шкалы и носителя регистрируемой информации). Подвижная часть преобразует угловое перемещение механизма в перемещение указателя, при этом величина α отсчитывается в единицах деления шкалы. X Y α

5 слайд

Описание слайда:

Общими элементами аналоговых электромеханических приборов являются: корпус (из металла или пластмассы), неподвижная и подвижная части (катушка, ферромагнитный магнитопровод или алюминиевый вращающийся диск), противодействующее устройство (спиральная или ленточная пружина), успокоитель (жидкостный или магнитоиндукционный), корректор нулевого положения и отсчетное устройство (шкала и указатель).

6 слайд

Описание слайда:

7 слайд

Описание слайда:

В зависимости от физических явлений, положенных в основу создания вращающего момента, или, другими словами, от способа преобразования электромагнитной энергии, подводимой к прибору, в механическую энергию перемещения подвижной части электромеханические приборы делятся на следующие основные системы: магнитоэлектрические, электромагнитные, электродинамические, ферродинамические, электростатические, индукционные.

8 слайд

Описание слайда:

Принцип действия ИМ различных групп приборов основан на взаимодействии: магнитоэлектрических ИМ - магнитных полей постоянного магнита и проводника с током; электро­магнитных - магнитного поля, создаваемого проводником с током, и ферромагнитного сердечника; электродинамических (и ферродинамических) - магнитных полей двух систем проводников с токами; электростатических - двух систем заряженных электродов; индукционных - переменного магнитного поля проводника с током и индуцирован­ных этим полем вихревых токов в по­движном элементе -в результате создается вращающий момент МВР.

9 слайд

Описание слайда:

В зависимости от способа создания противодействующего момента Мa электромеханические СИ подразделяют- ся на две группы: - с механическим противодействующим моментом; - с электрическим противодействующим моментом (логометры).

10 слайд

Описание слайда:

Логометр - электроизмерительный прибор для измерения отношения сил двух электрических токов. Подвижная часть выполнена в виде двух рамок, расположенных перпендикулярно. Когда по рамке логометра протекает ток, то при взаимодействии с магнитным полем постоянного магнита эллиптической формы (неподвижной частью логометра), создаётся вращающий момент, который передвигает стрелку прибора. Когда токи в обеих рамках равны, их вращающие моменты равны, стрелка прибора занимает нулевое положение. Если токи различны, подвижная часть прибора перемещается таким образом, что рамка с большим током оказывается в положении с большим зазором постоянного магнита (из-за его эллиптичности). В результате вращающий момент, создаваемый рамкой, уменьшается и становится равным вращающему моменту рамки с меньшим током. Логометр обычно применяется в приборах для измерения сопротивления, индуктивности, ёмкости, температуры. Логометр - это прибор, в котором нет спиральных пружин, создающих противодействующий момент при повороте стрелки, и показания которых не зависят от величины тока, а зависят от кратного отношения токов в катушках. Распространены логометры магнитоэлектрической, электродинамической, ферродинамической, электромагнитной системы. Например, логометром является магнитоэлектрический мегомметр, прибор для измерения температуры в комплекте с термометром сопротивления и др.

11 слайд

Описание слайда:

12 слайд

Описание слайда:

Магнитоэлектрические амперметры и вольтметры являются основными измерительными приборами в цепях постоянного тока Приборы магнитоэлектрической системы основываются на принципе взаимодействия тока катушки (рамки с током) и магнитного поля постоянного магнита. Неподвижная часть состоит из постоянного магнита 1, его полюсных наконечников 2 и неподвижного сердечника 3. В зазоре между полюсными наконечниками и сердечником существует сильное магнитное поле. Подвижная часть измерительного механизма состоит из легкой рамки 4, обмотка которой навивается на алюминиевый каркас, и двух полуосей 5, неподвижно связанных с каркасом рамки. Концы обмотки припаяны к двум спиральным пружинам 6, через которые в рамку подводится измеряемый ток. К рамке прикреплены стрелка 7 и противовесы 8. В зазоре между полюсными наконечниками и сердечником устанавливается рамка. Ее полуоси вставляются в стеклянные или агатовые подшипники. При прохождении тока по обмотке рамки, последняя стремится повернуться, но ее свободному повороту противодействуют спиральные пружины. И тому углу, на который рамка все же развернется, оказывается, соответствует определенная сила тока, который протекает по обмотке рамки. Иными словами, угол поворота рамки (стрелки) пропорционален силе тока. У амперметров и вольтметров измерительные механизмы в принципе одинаковы. Их отличие заключается лишь в электрическом сопротивлении рамок. У амперметра сопротивление рамки значительно меньше, чем у вольтметра.

13 слайд

Описание слайда:

При изменении направления тока изменяется направление вращающего момента (определяемое прави­лом левой руки). При включении прибора магнитоэлектрической системы в цепь переменного тока на катушку действуют быстро изменяющиеся по значению и направлению механические силы, среднее значение которых равно нулю. В результате стрелка прибора не будет отклоняться от нулевого положения. Поэтому эти приборы нельзя применять непосредственно для измерений в цепях переменного тока. Успокоение (демпфирование) стрелки в приборах магнитоэлектрической системы происходит благодаря тому, что при перемещении алюминиевой рамки в магнитном поле постоянного магнита NS в ней индуктируются вихревые токи. В результате взаимодействия этих токов с магнитным полем возникает момент, действующий на рамку в направлении, противополож­ном ее перемещению, вызывая быстрое успокоению колебаний рамки.

14 слайд

Описание слайда:

1) с подвижной катушкой и неподвижным магнитом; 2) с подвижным магнитом и неподвижной катушкой. с внешним магнитом с внутренним магнитом условное обозначение 1 – неподвижный постоянный магнит; 2 - магнитопровод; 3- сердечник; 4 – рамка; 5 – пружина; 6- стрелка

15 слайд

Описание слайда:

16 слайд

Описание слайда:

Достоинства: большая чувствительность, высокая точность, равномерная шкала, малое собственное потребление мощности, малое влияние внешних магнитных полей благодаря сильному собственному магнитному полю. Недостатки: сложность конструкции, высокая стоимость, непригодность к работе в цепях переменного тока чувствительность к перегрузкам и изменениям тока.

17 слайд

Описание слайда:

Применение: в качестве амперметров и вольт­метров постоянного тока с преде­лами измерений от наноампер до килоампер и от долей милливоль­та до киловольт, гальванометров постоянного тока, гальваномет­ров переменного тока и осциллографических гальванометров; в сочетании с различного рода преобразователями переменного тока в постоянный они используются для измерений в цепях переменного тока.

18 слайд

Описание слайда:

Подготовить презентации: Магнитоэлектрические гальванометры Магнитоэлектрические логометры Магнитоэлектрические омметры Магнитоэлектрические амперметры и вольтметры

19 слайд

Описание слайда:

Приборы электромагнитной системы работают на принципе втягивания металлического якоря в катушку, когда по ней проходит электрический ток. Принцип работы приборов электромагнитной системы основан на взаимодействии магнитного поля, созданного неподвижной катушкой, по обмотке которой протекает измеряемый ток, с одним или несколькими ферромагнитными сердечниками, укрепленными на оси. Неподвижная катушка 3 представляет собой каркас с навитой изолированной медной лентой. Когда по катушке протекает измеряемый ток, в ее плоской щели создается магнитное поле. Сердечник 5 со стрелкой 4 укреплен на оси 1. Магнитное поле катушки намагничивает сердечник и втягивает его во внутрь щели, поворачивая ось со стрелкой. Спиральная пружина 2 создает противодействующий момент Мпр 1 – ось 2 – спиральная пружина 3 – катушка 4 – стрелка 5 – сердечник 6 - успокоитель

20 слайд

Описание слайда:

Преимущества простота конструкции, способность измерять постоянные и переменные токи, способность выдерживать большие перегрузки, невысокая стоимость. Недостатки влияние на показания приборов внешних магнитных полей, неравномерная шкала (квадратичная, т.е.сжата в начале и растянута в конце), малая чувствительность, невысокая точность, большое собственное потребление мощности.

21 слайд

Описание слайда:

Приборы ЭМ системы применяют в основном как щитовые амперметры и вольтметры переменного тока промышленной частоты класса точности 1,0 и более низких классов для измерений в цепях переменного тока, в переносных многопредельных приборах класса точности 0,5.

22 слайд

Слайд 2

Что это такое?

  • Слайд 3

    Прибор

    • Прибор – это устройство для измерения физических величин.
    • Измерительным его назвали из-за того, что им что-нибудь измеряют.
    • Мерить – значит сравнивать одну величину с другой.
  • Слайд 4

    • У каждого прибора есть шкала (деление). По ней сравнивают величины.
    • Возьмём самый простой прибор –линейку и рассмотрим её. Она прямая и имеет шкалу.
    • Шкала линейки непростая, она вмещает в себя две физические величины сантиметр и миллиметр. Так пятисантиметровая линейка имеет
  • Слайд 5

    • Пятьдесят отдалённых друг от друга коротких чёрточек по одному мм (это примерно равно толщине проволоки сетчатого забора) и пять длинных по одному см (это примерно равно ширине ногтя мизинца).
    • Значит в 1см 10мм. Подписываютсятолько сантиметры. Т.к. миллиметрынеудобны в использовании.
  • Слайд 6

    Слайд 7

    Назначение

    • Так у линейки два назначения:
      • 1)черчение прямых линий и проверка линий (прямы ли они).
      • 2)измерение длины предметов
  • Слайд 8

    Динамометр

    • Динамометр – это прибор для измерения силы.
    • Цена одного деления равна одному Ньютону.(пишется 1Н)
    • Динамометром можно измерить силу трения, тяговую силу.
  • Слайд 9

    Виды динамометров

    • Медицинский динамометр.(для измерения сил разных мышечных групп человека)
    • Ручной динамометр-силометр. (для измерения силы рук)
    • Тяговый динамометр. (для измерения больших сил)
  • Слайд 10

    С этим прибором дружат спортсмены

  • Слайд 11

    Силомер

    • Силомер представляет собой две овальные рукоятки, соединённые между собой пружиной
    • При их сжатии металлическая пластина предаёт действие стрелке. Цена одного деления равна 1 кг.
  • Слайд 12

    Слайд 13

    С этим прибором можно предсказать погоду

  • Слайд 14

    Барометр анероид

  • Слайд 15

    Барометр

    • Барометр – это металлический прибор для измерения атмосферного давления.
    • Цена одного деления равна двум мм рт. ст.
    • По строению похож на монометр.
  • Слайд 16

    Барометр анероид

    • Строение: это металлическая коробочка, из которой выкачан воздух. К ней крепится пружинка чтобы её не раздавило атмосферное давление. Пружину крепят к стрелке с помощью придаточного механизма.
  • Слайд 17

  • Слайд 18

    Без чего не измерить давление в шине

  • Слайд 19

    Манометр

    • Манометр используют для измерения давления большего или меньшего, чем атмосферное.
    • Одно деление у маномометра-это атмосфера.
    • 2 атмосферы – значит, что давление больше атм. в 2 раза.
  • Слайд 20

    • Прибор работает за счёт упругости.
    • Строение: это загнутая металлическая трубка запаянная с одной стороны. Она крепится к стрелке с помощью зубчатой шестерни. Если давление уве-
  • Слайд 21

    • -личевается, то трубка распрямляется и предаёт движение стрелке. Она начинает двигаться вправо. Если же давление уменьшается, то трубка загибается обратно (за счёт упругости) пока не примет первоначальную форму. Стрелка продолжает двигаться за трубкой постоянно.
  • краткое содержание других презентаций

    «Электрический ток в различных средах» - Электрический ток в газах. Электрический ток в полупроводниках. Закон Фарадея. Урок в 8 классе. Полупроводниковые диоды, транзисторы. Самостоятельные газовые разряды: искровой, дуговой, коронный, тлеющий. Односторонняя проводимость на границе полупроводников n-типа р-типа. Полупроводники n-типа, полупроводники р-типа. Электрический ток в вакууме. Электрический ток в металлах. Гальванопластика. Вакуумные диоды.

    «Турбина и ДВС» - Двигатель внутреннего сгорания – очень распространенный вид теплового двигателя. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах. Один ход поршня совершается за пол-оборота коленчатого вала. Двигатель внутреннего сгорания. Цикл ДВС. Третий такт ДВС. Поэтому такие двигатели называют четырёхтактными. 1. Диск 2. Вал 3. Лопатки 4. Сопло.

    «Законы постоянного тока» - Составь рассказ по картинкам. Лабораторная работа. Исследование строения гальванического элемента. Р. в Кенигсберге. Двигатели асинхронные с короткозамкнутым ротором. III1824 – 17.Х1887)- немецкий физик, член Берлинской АН (1875). Личные цели. Домашний эксперимент. «Исследование последовательного соединения проводников». Содержание. Историческая справка.

    «Способы изменения внутренней энергии» - Способы изменения внутренней энергии тела. 1.Какое движение называют тепловым? Урок физики в 8 классе. T ? ? v молекул?. Зависимость внутренней энергии тела от температуры тела. T ? ? v молекул?. Зависимость скорости движения молекул от температуры тела. 3. Какую энергию называют внутренней? Еп зависит от расстояния между молекулами (агрегатного состояния вещества).

    «Физика в ванной» - С холодной водой подобных неприятностей не случается? Проблемные вопросы: Для испарения воды требуется тепло. Выполнили: Рочева Анжелика Семяшкина Елена Ученицы 8 «в». Почему в ванной комнате ваш голос звучит громче? Почему в ванной комнате ваш голос звучит громче? Цель: Как измерить объем своего тела? Почему когда моешься в душе стенки и зеркала запотевают?

    «Механические волны 9 класс» - Длина волны, ?: ? = v ? Т или? = v: ? [?] = м. Чему равна длина волны? Э н е р г и я. Механические волны -. Ф и з и к а 9 класс. Объясните ситуацию: Источник совершает колебания вдоль оси OY перпендикулярно ОХ. Что «движется» в волне? Источник совершает колебания вдоль оси ОХ. Механизм колебаний. Сначала-блеск, За блеском-треск, За треском-плеск. Модель упругой среды. В. Энергию.

    Слайд 1

    Описание слайда:

    Слайд 2

    Описание слайда:

    Слайд 3

    Описание слайда:

    Слайд 4

    Описание слайда:

    Слайд 5

    Описание слайда:

    Слайд 6

    Описание слайда:

    Слайд 7

    Описание слайда:

    Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О", к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок). В результате при любом положении катушки силы, действующие на неё со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О", к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок). В результате при любом положении катушки силы, действующие на неё со стороны магнитного поля, максимальны и при неизменной силе тока постоянны.

    Слайд 8

    Описание слайда:

    Слайд 9

    Описание слайда:

    Слайд 10

    Описание слайда:

    Слайд 11

    Оптические приборы вооружающие глаз

    Изображения рассматриваемых предметов являются мнимыми.

    Угловое увеличение – отношение угла зрения при наблюдении предмета через оптический прибор к углу зрения при наблюдении невооруженным глазом (характеристика оптического прибора).

    Лупа

    Лупа – собирающая линза или система линз с малым фокусным расстоянием.

    h d 0

    Угол зрения, под которым виден предмет невооруженным глазом.

    d0 =25см – расстояние наилучшего зрения. h – линейный размер предмета.

    Лупу помещают близко к глазу, а предмет располагают в ее фокальной плоскости.

    h - угол, под которым в лупу виден

    F предмет.

    Fd – фокусное расстояние лупы.

    Г 0 - угловое увеличение лупы.

    Увеличение, даваемое лупой, ограничено ее размерами.

    Лупы применяют часовых дел мастера, геологи, ботаники, криминалисты.

    Микроскоп

    Микроскоп представляет собой комбинацию двух линз или систем линз.

    Линза О1 , обращенная к предмету называется объективом

    (дает действительное увеличение изображения предмета). Линза О2 – окуляр .

    Предмет помещают между фокусом объектива и точкой, находящейся на двойном фокусном расстоянии. Окуляр размещают так, чтобы изображение совпадало с фокальной

    Увеличением микроскопа называется отношение угла зрения φ, под которым виден предмет при наблюдении через микроскоп, к углу зрения ψ при наблюдении невооруженным глазом с расстояния наилучшего зрения

    d0 =25см.

    Гм

    Увеличение микроскопа

    Для лупы.

    Для микроскопа,

    h’ – линейный размер изображения, даваемого

    объективом. F2 – фокусное расстояние окуляра.

    Линейный размер изображения в объективе связан с линейным размером предмета соотношением:

    f F1

    F1 – фокусное расстояние объектива.

    Оптическая длина тубуса микроскопа

    (расстояние между задним объектива и

    передним фокусом окуляра).

    Увеличение микроскопа: от нескольких

    десятков до 1500.

    F1 F2

    Микроскоп позволяет различать мелкие

    детали предмета, которые при наблюденииUchim.net

    невооруженным глазом или с помощью лупы

    Труба Кеплера

    В 1613 г. была изготовлена Кристофом Шайнером по схеме Кеплера.

    Кеплер (1571 – 1630)

    Объектив – длиннофокусная линза, дающая действительное уменьшенное, перевернутое изображение предмета. Изображение удаленного предмета получается в фокальной плоскости объектива. Окуляр находится от этого изображения на своем фокусном расстоянии. Uchim.net

    Угловым увеличением зрительной трубы называется отношение угла зрения, под которым мы видим изображение предмета в трубе, к углу зрения, под которым мы видим тот

    же предмет непосредственно.

    Г Т - увеличение зрительной трубы.

    Увеличение зрительной трубы равно отношению фокусного

    расстояния объектива к фокусному расстоянию окуляра.

    ГТ F 1 F2

    Труба Кеплера дает перевернутое изображение.

    Бинокль

    Бинокль представляет собой две зрительные трубы, соединенные вместе для наблюдения предмета двумя глазами.

    Призменный бинокль.

    Для уменьшения размеров применяемых в бинокле труб Кеплера и переворачивания изображения используются прямоугольные призмы полного отражения.

    Труба

    ГалилейГалилея в 1609 году конструирует собственноручно первый телескоп.

    Галилео Галилей (1564- 1642)

    Лучи, идущие от предмета, проходят через собирающую линзу и становятся сходящимися (дали бы перевернутое, уменьшенное изображение). Затем они попадают на рассеивающую линзу и становятся расходящимися. Они дают

    мнимое, прямое, увеличенное изображение предмета.

    С помощью своей трубы с 30-кратным увеличением Галилей сделал ряд астрономических открытий: Обнаружил горы на Луне, пятна на Солнце, открыл четыре спутника Юпитера, фазы Венеры, установил, что Млечный Путь состоит из множества звезд.