Интернет Windows Android

Multi-Core vs. Many-Core, или Зачем нужны многоядерные микропроцессоры? Вся правда о многоядерных процессорах

QX | 22 июля 2015, 14:45
Не только частота, техпроцесс тоже. Современные 2-ядерные процессоры по 3 ГГц не сравнить с первыми 2-ядерниками, из тех что тоже по 3 ГГц. Частота одинаковая, но старые просто жуткие тормоза в сравнении с новыми. В итоге современный 2-ядерный i3 намного лучше, чем 4-ядерник Quad Q6600. Даже Pentium G посвежее лучше старого Quadа.

QX | 11 июля 2015, 12:18
Здесь разница в частоте не велика, 3,5 против 3 ГГц. Потому интересны 4 ядра. Но конечно если остальные характеристики тоже не отстают. Много ядер нужно для архивации, кодирования видео и т.п. Взяв 2 ядерник ещё и сэкономить можно, слегка. Ещё вопрос, как много будете работать на нём. Ну и лучше бы Вы всё-таки обе модели конкретно назвали. А так, я бы Вам посоветовал Core i3 помощнее и посвежее.

MaKos007 | 30 марта 2015, 16:00
Я тут буду растекаться мысью по древу. потому сразу скажу - ваш выбор двухъядерный процессор с более высокой частотой. Если теория не интересна, то дальше можно не читать.

Частота процессора представляет собой, фактически, количество операций, выполняемых им в единицу времени. Таким образом, чем выше частота, тем больше действий выполняется за секунду, например.

Что же у нас с количеством ядер... При наличии более чем одного ядра процессор может обсчитывать более одной задачи. Это как ленты конвейера. Одна лента конвейера работает быстро, но две параллельные ленты, на которых идут операции, выдают в два раза больше результата. Так что в теории двухъядерные решения будут работать вдвое быстрее одноядерного.

Это теория, но как и с конвейерами, эти два потока надо чем-то нагрузить. при этом нагрузить правильно, чтобы каждая лента работала с полной отдачей. В случае с процессорами это зависит от архитектуры программ и игр, которые используют эту самую многоядерность. Если приложение умеет разделять задачи на несколько потоков (читай - использовать многоядерность процессора), то многоядерность может дать значимый прирост в скорости исполнения команд. А ежели не умеет или задачи такие, что разделить невозможно, тогда совершенно неважно много ядер в CPU или нет.

На самом деле, вопрос оптимального количества ядер - сложный. Здесь еще важна архитектура самих ядер и связей между ними. Так первые многоядерные процессоры имели значительно менее функциональное устройство, чем современные. Кроме того, следует учитывать, что современные ОС Windows 7 и Windows 8 (я не рассматриваю здесь *nix системы и их поддержку многоядерных процессоров - отдельная и очень интересная тема) найчились очень хорошо распараллеливать многие задачи. Таким образом, многоядерность помогает не тормозить основные процессы (используемые пользователем приложения и игры) из-за выполнения фоновых задач. Таким образом, антивирусная защита и фаервол не станут тормозить (точнее, в меньшей степени будут тормозить) запущенную игру или работу в Фотошопе.

Для каких программ важна многоядерность. Проведя некоторое время в интернете, можно выяснить, что она ускоряет конвертацию видео и аудио; рендеринг 3D-моделей, шифрование сигнала и т.п. Вам для работы в Photoshop и видеомонтажа не нужно 4 ядра. Вполне достаточно, как я уже говорил, двух, но с более высоким быстродействием каждого из них.

teleport | 21 апреля 2013, 01:30
Простой подсчет производительности показывает: для 2-х ядерного общая производительность 2 x 3.5 = 7, для 4-х ядерного - 4 x 3 = 12. Так что 4-х ядерный почти в 2 раза мощнее. Кроме того он наверняка современнее, а значит экономичнее и производительнее. А если используется только одно ядро - меньше греется, поскольку частота одного ядра немного ниже, но для нагрева это существенно.

Для видеомонтажа процессор скорее всего не критичен там в основном задействуются ресурсы видеокарты или специальной платы видеомонтажа. Но процессор в этом тоже учавствует и если 2-х ядерный отдаст под эту задачу одно ядро, то остальные задачи (разные антивири) будут бороться за оставшееся ядро, что приведет к жуткой тупизне. Короче многоядерность лучше.

yang | 11 апреля 2013, 20:22
В данном случае эффективнее и экономичнее во всех отношениях будет двухъядерный процессор.

Я рассказал, почему рост частоты процессоров застопорился на нескольких гигагерцах. Теперь же поговорим о том, почему развитие числа ядер в пользовательских процессорах также идет крайне медленно: так, первый честный двухядерный процессор (где оба ядра были в одном кристалле), построенный на архитектуре x86, появился аж в 2006 году, 12 лет назад - это была линейка Intel Core Duo. И с тех пор 2-ядерные процессоры с арены не уходят, более того - активно развиваются: так, буквально на днях вышел ноутбук Lenovo с процессором, построенном на новейшем (для архитектуры x86) 10 нм техпроцессе. И да, как вы уже догадались, этот процессор имеет ровно 2 ядра.

Для пользовательских процессоров число ядер застопорилось на 6 еще с 2010 года, с выходом линейки AMD Phenom X6 - да, AMD FX не были честными 8-ядерными процессорами (там было 4 APU), равно как и Ryzen 7 представляет собой два блока по 4 ядра, расположенные бок о бок на кристалле. И тут, разумеется, возникает вопрос - а почему так? Ведь те же видеокарты, будучи в 1995-6 годах по сути «одноголовыми» (то есть имевшими 1 шейдер), сумели к текущему времени нарастить их число до нескольких тысяч - так, в Nvidia Titan V их аж 5120! При этом за гораздо больший срок развития архитектуры x86 пользовательские процессоры остановились на честных 6 ядрах на кристалле, а CPU для высокопроизводительных ПК - на 18, то есть на пару порядков меньше, чем у видеокарт. Почему? Об этом и поговорим ниже.

Архитектура CPU

Изначально все процессоры Intel x86 строились на архитектуре CISC (Complex Instruction Set Computing, процессоры с полным набором инструкций) - то есть в них реализовано максимальное число инструкций «на все случаи жизни». С одной стороны, это здорово: так, в 90-ые годы CPU отвечал и за рендеринг картинки, и даже за звук (был такой лайфхак - если игра тормозит, то может помочь отключение в ней звука). И даже сейчас процессор является эдаким комбайном, который может все - и это же является и проблемой: распараллелить случайную задачу на несколько ядер - задача не тривиальная. Допустим, с двумя ядрами можно сделать просто: на одно ядро «вешаем» систему и все фоновые задачи, на другое - только приложение. Это сработает всегда, но вот прирост производительности будет далеко не двукратным, так как обычно фоновые процессы требуют существенно меньше ресурсов, чем текущая тяжелая задача.

Слева - схема GPU Nvidia GTX 980 Ti, где видно 2816 CUDA-ядер, объединенных в кластеры. Справа - фотография кристалла процессора AMD Ryzen, где видно 4 больших ядра.

А теперь представим, что у нас не два, а 4 или вообще 8 ядер. Да, в задачах по архивации и другим расчетам распараллеливание работает хорошо (и именно поэтому те же серверные процессоры могут иметь и несколько десятков ядер). Но что если у нас задача со случайным исходом (которых, увы, большинство) - допустим, игра? Ведь тут каждое новое действие зависит всецело от игрока, поэтому «раскидывание» такой нагрузки на несколько ядер - задача не из простых, из-за чего разработчики зачастую «руками» прописывают, чем занимаются ядра: так, к примеру, одно может быть занято только обработкой действий искусственного интеллекта, другое отвечать только за объемный звук, и так далее. Нагрузить таким способом даже 8-ядерный процессор - практически невозможно, что мы и видим на практике.

С видеокартами же все проще: GPU, по сути, занимается расчетами и только ими, причем число разновидностей расчетов ограничено и невелико. Поэтому, во-первых, можно оптимизировать сами вычислительные ядра (у Nvidia они называются CUDA) именно под нужные задачи, а, во-вторых - раз все возможные задачи известны, то процесс их распараллеливания трудностей не вызывает. И в-третьих, управление идет не отдельными шейдерами, а вычислительными модулями, которые включают в себя 64-192 шейдера, поэтому большое число шейдеров проблемой не является.

Энергопотребление

Одной из причин отказа от дальнейшей гонки частот - резкое увеличение энергопотребления. Как я уже объяснял в статье с замедлением роста частоты CPU, тепловыделение процессора пропорционально кубу частоты. Иными словами, если на частоте в 2 ГГц процессор выделяет 100 Вт тепла, что в принципе можно без проблем отвести воздушным кулером, то на 4 ГГц получится уже 800 Вт, что возможно отвести в лучшем случае испарительной камерой с жидким азотом (хотя тут следует учитывать, что формула все же приблизительная, да и в процессоре есть не только вычислительные ядра, но получить порядок цифр с ее помощью вполне можно).

Поэтому рост вширь был отличным выходом: так, грубо говоря, двухядерный 2 ГГц процессор будет потреблять 200 Вт, а вот одноядерный 3 ГГц - почти 340, то есть выигрыш по тепловыделению больше чем на 50%, при этом в задачах с хорошей оптимизацией под многопоточность низкочастотный двухядерный CPU будет все же быстрее высокочастотного одноядерного.


Пример испарительной камеры с жидким азотом для охлаждения экстремально разогнанных CPU.

Казалось бы - это золотое дно, быстро делаем 10-ядерный процессор с частотой в 1 ГГц, который будет выделять лишь на 25% больше тепла, чем одноядерный CPU с 2 ГГц (если 2 ГГц процессор выделяет 100 Вт тепла, то 1 ГГц - всего 12.5 Вт, 10 ядер - около 125 Вт). Но тут мы быстро упираемся в то, что далеко не все задачи хорошо распараллеливаются, поэтому на практике зачастую будет получаться так, что гораздо более дешевый в производстве одноядерный CPU с 2 ГГц будет существенно быстрее гораздо более дорогого 10-ядерного, но с 1 ГГц. Но все же такие процессоры есть - в серверном сегменте, где проблем с распараллеливанием задач нет, и 40-60 ядерный CPU с частотами в 1.5 ГГц зачастую оказывается в разы быстрее 8-10 ядерных процессоров с частотами под 4 ГГц, выделяя при этом сравнимое количество тепла.

Поэтому производителям CPU приходится следить за тем, чтобы при росте ядер не страдала однопоточная производительность, а с учетом того, что предел отвода тепла в обычном домашнем ПК был «нащупан» уже достаточно давно (это около 60-100 Вт) - способов увеличения числа ядер при такой же одноядерной производительности и таком же тепловыделении всего два: это или оптимизировать саму архитектуру процессора, увеличивая его производительность за такт, или же уменьшать техпроцесс. Но, увы, и то и другое идет все медленнее: за более чем 30 лет существования x86 процессоров «отполировано» уже почти все, что можно, поэтому прирост идет в лучшем случае 5% за поколение, а уменьшение техпроцесса дается все труднее из-за фундаментальных проблем создания корректно функционирующих транзисторов (при размерах в десяток нанометров уже начинают сказываться квантовые эффекты, трудно изготовить подходящий лазер, и т.д.) - поэтому, увы, увеличивать число ядер все сложнее.

Размер кристалла

Если мы посмотрим на площадь кристаллов процессоров лет 15 назад, то увидим, что она составляет всего около 100-150 квадратных миллиметров. Около 5-7 лет назад чипы «доросли» до 300-400 кв мм и... процесс практически остановился. Почему? Все просто - во-первых, производить гигантские кристаллы очень сложно, из-за чего резко возрастает количество брака, а, значит, и конечная стоимость CPU.

Во-вторых, возрастает хрупкость: большой кристалл может очень легко расколоть, к тому же разные его края могут греться по-разному, из-за чего опять же может произойти его физическое повреждение.


Сравнение кристаллов Intel Pentium 3 и Core i9.

Ну и в-третьих - скорость света также вносит свое ограничение: да, она хоть и велика, но не бесконечна, и с большими кристаллами это может вносить задержку, а то и вовсе сделать работу процессора невозможной.

В итоге максимальный размер кристалла остановился где-то на 500 кв мм, и вряд ли уже будет расти - поэтому чтобы увеличивать число ядер, нужно уменьшать их размеры. Казалось бы - та же Nvidia или AMD смогли это сделать, и их GPU имеют тысячи шейдеров. Но тут следует понимать, что шейдеры полноценными ядрами не являются - к примеру, они не имеют собственного кэша, а только общий, плюс «заточка» под определенные задачи позволила «выкинуть» из них все лишнее, что опять же сказалось на их размере. А CPU же не только имеет полноценные ядра с собственным кэшем, но зачастую на этом же кристалле расположена и графика, и различные контроллеры - так что в итоге опять же чуть ли не единственные способы увеличения числа ядер при том же размере кристалла - это все та же оптимизация и все то же уменьшение техпроцесса, а они, как я уже писал, идут медленно.

Оптимизация работы

Представим, что у нас есть коллектив людей, выполняющих различные задачи, некоторые из которых требуют работы нескольких человек одновременно. Если людей в нем двое - они смогут договориться и эффективно работать. Четверо - уже сложнее, но тоже работа будет достаточно эффективной. А если людей 10, а то и 20? Тут уже нужно какое-то средство связи между ними, в противном случае в работе будут встречаться «перекосы», когда кто-то будет ничем не занят. В процессорах от Intel таким средством связи является кольцевая шина, которая связывает все ядра и позволяет им обмениваться информацией между собой.

Но даже и это не помогает: так, при одинаковых частотах 10-ядерный и 18-ядерный процессоры от Intel поколения Skylake-X различаются по производительности всего на 25-30%, хотя должны в теории аж на 80%. Причина как раз в шине - какой бы хорошей она не была, все равно будут возникать задержки и простои, и чем больше ядер - тем хуже будет ситуация. Но почему тогда таких проблем нет в видеокартах? Все просто - если ядра процессора можно представить людьми, которые могут выполнять различные задачи, то вычислительные блоки видеокарт - это скорее роботы на конвейере, которые могут выполнять только определенные инструкции. Им по сути «договариваться» не нужно - поэтому при росте их количества эффективность падает медленнее: так, разница в CUDA между 1080 (2560 штук) и 1080 Ti (3584 штуки) - 40%, на практике же около 25-35%, то есть потери существенно меньше.


Чем больше ядер, тем хуже они работают вместе, вплоть до нулевого прироста производительности при увеличении числа ядер.

Поэтому число ядер особого смысла наращивать нет - прирост от каждого нового ядра будет все ниже. Причем решить эту проблему достаточно трудно - нужно разработать такую шину, которая позволяла бы передавать данные между любыми двумя ядрами с одинаковой задержкой. Лучше всего в таком случае подходит топология звезда - когда все ядра должны быть соединены с концентратором, но на деле такой реализации еще никто не сделал.

Так что в итоге, как видим, что наращивание частоты, что наращивание числа ядер - задача достаточно сложная, а игра при этом зачастую не стоит свеч. И в ближайшем будущем вряд ли что-то серьезно изменится, так как ничего лучше кремниевых кристаллов пока еще не придумали.

Всем привет Давно идут споры в головах юзерах, что же лучше, высокая частота или количество ядер? Сейчас есть много процессоров и в основном они отличаются или количеством ядер и частотой или всем разом так бы сказать. Потому что именно эти два пункта это и есть основные факторы, которые влияют на производительность.

Значит смотрите, давайте я покажу на примере, почему иногда лучше много ядер, а иногда лучше высокая частота. Смотрите, для примера возьмем офисный комп, где создают и редактируют документы, пользуются интернетом, браузерами. Это все не особо требовательные задачи, но для комфорта лучше чтобы все это работало быстро. Да, тут можно взять например процессор Core i5 и оно таки все будет работать быстро. Но я бы взял тут Pentium G3258 (это как пример), это Пенек, тут два ядра и его можно хорошенько разогнать. Но стоит то он нааамного дешевле чем i5. Разогнать его можно до 4.4 ГГц, это так бы сказать безопасный разгон. И вот такие два ядра на частоте 4.4 ГГц позволят получить достаточно шустрый комп. А если разогнать до 4.6 ГГц, то еще лучше. При этом процессор особо страшно не греется, но хороший радиатор разумеется что нужен.

Вот такой разгон Pentium G3258 будет оправдан и в плане цены и в плане производительности

Теперь возьмем всеми любимые игры. Вы часто играете в несколько игр одновременно? Я думаю что нет. Поэтому в большом количестве ядер смысла нет. Но с другой стороны и два ядра будет маловато. Тут идеальная золотая середина это 4 ядра, это у нас идет процессор i5, это я имею ввиду для стационарных компов, ибо у ноутбучных i5 могут быть то 2 ядра и 4 потока, то просто 4 ядра, но ноутбучные процы однозначно слабее. Для игр идеально это 4 ядра на высокой частоте, хотя бы на 4.2 ГГц, это уже достаточно на пару лет вперед, как мне кажется. Ну на годика три так точно. i7 это почти тоже самое, но ШИРЕ в мощности. Понимаете. Не быстрее, а ШИРЕ, то есть сможет тянуть помимо игры еще что-то, ну например вторую игру, если вы уникум и играете в две игры одновременно..

Еще есть такой момент. По поводу высокой частоты и двух ядер и почему это лучше для офисного компа. Уверены ли вы, что все ваши программы могут работать в многопоточном режиме? И насколько хорошо они оптимизированы для такого режима? Ну что тут сказать, многие проги хорошо работают в многопоточном режиме, старые проги конечно хуже работают. Но как ни крути, НЕ оптимизированная прога лучше всего будет работать на двух мощных ядрах, чем на четырех с не особо высокой частотой, ну например 3 ГГц. Тоже моментик такой, учтите его, если будете выбирать процессор. Так что для тупо офисного компа я бы взял двухядерник с разблокированным множителем, чтобы потом хорошо его разогнать.

Вообще мне кажется что i7 больше подходит не для игр, а для каких-то более ресурсоемких задач. Ну например обработка видео, фотошопы там всякие, конвертирование чего-то.. Для игр он также хорош, спору нет, и если вы хотите взять процессор с хорошим запасом мощности, то конечно лучше взять i7 (но стоит он конечно недешево).

Ну все ребята, на этом все, надеюсь что тут я смог до вас донести свою мысль и что все вам тут было понятно. Удачи вам и чтобы у вас всегда было хорошее настроение

17.11.2016

Многие люди при покупке процессора стараются выбрать что-нибудь покруче, с несколькими ядрами и большой тактовой частотой. Но при этом мало кто знает, на что влияет количество ядер процессора в действительности. Почему, например, обычный и простенький двухъядерник может оказаться быстрее четырехядерника или тот же "проц" с 4 ядрами будет быстрее "проца" с 8 ядрами. Это довольно интересная тема, в которой определенно стоит разобраться более детально.

Вступление

Прежде чем начать разбираться, на что влияет количество ядер процессора, хотелось бы сделать небольшое отступление. Еще несколько лет назад разработчики ЦП были уверены в том, что технологии производства, которые так стремительно развиваются, позволят выпускать "камни" с тактовыми частотами до 10 Ггц, что позволит пользователям забыть о проблемах с плохой производительностью. Однако успех достигнут не был.

Как бы ни развивался техпроцесс, что "Интел", что "АМД" уперлись в чисто физические ограничения, которые попросту не позволяли выпускать "процы" с тактовой частотой до 10 Ггц. Тогда и было принято решение сфокусироваться не на частотах, а на количестве ядер. Таким образом, началась новая гонка по производству более мощных и производительных процессорных "кристаллов", которая продолжается и по сей день, но уже не столь активно, как это было на первых порах.

Процессоры Intel и AMD

На сегодняшний день "Интел" и "АМД" являются прямыми конкурентами на рынке процессоров. Если посмотреть на выручку и продажи, то явное преимущество будет на стороне "синих", хотя в последнее время "красные" стараются не отставать. У обоих компаний имеется хороший ассортимент готовых решений на все случаи жизни - от простого процессора с 1-2 ядрами до настоящих монстров, у которых количество ядер переваливает за 8. Обычно подобные "камни" используются на специальных рабочих "компах", которые имеют узкую направленность.

Intel

Итак, на сегодняшний день у компании Intel успехом пользуются 5 видов процессоров: Celeron, Pentium, и i7. Каждый из этих "камней" имеет разное количество ядер и предназначенные для разных задач. Например, Celeron имеет всего 2 ядра и используется в основном на офисных и домашних компьютерах. Pentium, или, как его еще называют, "пенек", также используется в дому, но уже имеет гораздо лучшую производительность, в первую очередь за счет технологии Hyper-Threading, которая "добавляет" физическим двум ядрам еще два виртуальных ядра, которые называют потоками. Таким образом, двухъядерный "проц" работает как самый бюджетный четырехъядерник, хотя это не совсем корректно сказано, но основная суть именно в этом.

Что же касается линейки Core, то тут примерно схожая ситуация. Младшая модель с цифрой 3 имеет 2 ядра и 2 потока. Линейка постарше - Core i5 - имеет уже полноценные 4 или 6 ядер, но лишена функции Hyper-Threading и дополнительных потоков не имеет, кроме как 4-6 стандартных. Ну и последнее - core i7 - это топовые процессоры, которые, как правило, имеют от 4 до 6 ядер и в два раза больше потоков, т. е., например, 4 ядра и 8 потоков или 6 ядер и 12 потоков.

AMD

Теперь стоит сказать про AMD. Список "камушков" от данной компании огромен, смысла перечислять все нет, поскольку большинство из моделей уже попросту устарели. Стоит, пожалуй, отметить новое поколение, которое в некотором смысле "копирует" "Интел" - Ryzen. В данной линейке также присутствуют модели с номерами 3, 5 и 7. Главное отличие от "синих" у Ryzen заключается в том, что самая младшая модель уже сразу предоставляет полноценные 4 ядра, а у старшей их не 6, а целых восемь. Кроме этого, и количество потоков меняется. Ryzen 3 - 4 потока, Ryzen 5 - 8-12 (в зависимости от кол-ва ядер - 4 или 6) и Ryzen 7 - 16 потоков.

Стоит упомянуть и о еще одной линейке "красных" - FX, которая появилась в 2012 году, и, по сути, данная платформа уже считается устаревшей, но благодаря тому, что сейчас все больше и больше программ и игр начинает поддерживать многопоточность, линейка Vishera вновь обрела популярность, которая наряду с низкими ценами только растет.

Ну а что касается споров касательно частоты процессора и количества ядер, то, по сути, правильнее смотреть в сторону второго, поскольку с тактовыми частотами уже давно все определились, и даже топовые модели от "Интел" работают на номинальных 2. 7, 2. 8, 3 Ггц. Помимо этого, частоту всегда можно поднять при помощи оверклокинга, но в случае с двухъядерником это не даст особого эффекта.

Как узнать сколько ядер

Если кто-то не знает, как определить количество ядер процессора, то сделать это можно легко и просто даже без скачивания и установки отдельных специальных программ. Достаточно лишь зайти в "Диспетчер устройств" и нажать на маленькую стрелочку рядом с пунктом "Процессоры".

Получить более подробную информацию о том, какие технологии поддерживает ваш "камень", какая у него тактовая частота, номер его ревизии и многое другое можно при помощи специальной и маленькой программки CPU-Z. Скачать ее можно бесплатно на официальном сайте. Есть версия, которая не требует установки.

Преимущество двух ядер

В чем может быть преимущество двухъядерного процессора? Много в чем, например, в играх или приложениях, при разработке которых основным приоритетом была однопоточная работа. Взять хотя бы для примера игру Wold of Tanks. Самые обычные двухъядерники типа Pentium или Celeron будут выдавать вполне приличный результат по производительности, в то время как какой-нибудь FX от AMD или INTEL Core задействуют гораздо больше своих возможностей, а итог будет примерно таким же.

Чем лучше 4 ядра

Чем 4 ядра могут быть лучше двух? Лучшей производительностью. Четырехъядерные "камни" рассчитаны уже на более серьезную работу, где простые "пеньки" или "селероны" попросту не справятся. Отличным примером тут послужит любая программа по работе с 3D-графикой, например 3Ds Max или Cinema4D.

Во время процесса рендеринга данные программы задействуют максимум ресурсов компьютера, включая оперативную память и процессор. Двухъядерные ЦП будут очень сильно отставать по времени обработки рендера, и чем сложнее будет сцена, тем больше времени им потребуется. А вот процессоры с четырьмя ядрами справятся с данной задачей гораздо быстрее, поскольку им на помощь придут еще и дополнительные потоки.

Конечно, можно взять и какой-нибудь бюджетный "процик" из семейства Core i3, например, модель 6100, но 2 ядра и 2 дополнительных потока все равно будут уступать полноценному четырехядернику.

6 и 8 ядер

Ну и последний сегмент многоядерников - процессоры с шестью и восемью ядрами. Их основное предназначение, в принципе, точно такое же, как и у ЦП выше, только вот нужны они там, где обычные "четверки" не справляются. Кроме этого, на базе "камней" с 6 и 8 ядрами строят полноценные профильные компьютеры, которые будут "заточены" под определенную деятельность, например, монтаж видео, 3Д-программы для моделирования, рендеринг готовых тяжелых сцен с большим количеством полигонов и объектов и т. д.

Помимо этого, такие многоядерники очень хорошо себя показывают в работе с архиваторами или в приложениях, где нужны хорошие вычислительные возможности. В играх, которые оптимизированы под многопоточность, равных таких процессорам нет.

На что влияет количество ядер процессора

Итак, на что же еще может влиять количество ядер? В первую очередь на повышение энергопотребления. Да, как бы это ни прозвучало удивительно, но это так и есть. Особо переживать не стоит, потому как в повседневной жизни данная проблема, если можно так выразиться, заметна не будет.

Второе - это нагрев. Чем больше ядер, тем лучше нужна система охлаждения. Поможет измерить температуру процессора программа, которая называется AIDA64. При запуске нужно нажать на "Компьютер", а затем выбрать "Датчики". Следить за температурой процессора нужно, потому как если он будет постоянно перегреваться или работать на слишком высоких температурах, то через какое-то время он просто сгорит.

Двухъядерники незнакомы с такой проблемой, потому как не обладают слишком высокой производительностью и тепловыделением соответственно, а вот многоядерники - да. Самыми "горячими" считаются камни от AMD, особенно серии FX. Например, возьмем модель FX-6300. Температура процессора в программе AIDA64 находится в отметке около 40 градусов и это в режиме простоя. При нагрузке цифра будет расти и если случится перегрев, то комп выключится. Так что, покупая многоядерник, нужно не забывать о кулере.

На что влияет количество ядер процессора еще? На многозадачность. Двухъядерные"процы" не смогут обеспечить стабильную производительность при работе в двух, трех и более программ одновременно. Самый простой пример - стримеры в интернете. Помимо того, что они играют в какую-нибудь игру на высоких настройках, у них параллельно запущена программа, которая позволяет транслировать игровой процесс в интернет в режиме онлайн, работает и интернет-браузер с несколькими открытыми страницами, где игрок, как правило, читает комментарии смотрящих его людей и следит за прочей информацией. Обеспечить должную стабильность может даже далеко не каждый многоядерник, не говоря уже о двух- и одноядерных процессорах.

Также стоит сказать пару слов о том, что у многоядерных процессоров есть очень полезная вещь, которая называется "Кеш третьего уровня L3". Этот кеш имеет определенный объем памяти, в который постоянно записывается различная информация о запущенных программах, выполненных действиях и т. д. Нужно это все для того, чтобы увеличить скорость работы компьютера и его быстродействие. Например, если человек часто пользуется фотошопом, то эта информация сохранится в памяти каша, и время на запуск и открытие программы значительно сократиться.

Подведение итогов

Подводя итог разговора о том, на что влияет количество ядер процессора, можно прийти к одному простому выводу: если нужна хорошая производительность, быстродействие, многозадачность, работа в тяжелых приложениях, возможность комфортно играть в современные игры и т. д., то ваш выбор - процессор с четырьмя ядрами и больше. Если же нужен простенький "комп" для офиса или домашнего пользования, который будет использоваться по минимуму, то 2 ядра - это то что нужно. В любом случае, выбирая процессор, в первую очередь нужно проанализировать все свои потребности и задачи, и только после этого рассматривать какие-либо варианты.

Добрый день, уважаемые читатели нашего блога. Сегодня постараемся разобраться, что важнее частота или количество ядер процессора? На что влияет каждый из этих параметров в повседневном использовании, в играх и профессиональных приложениях? Играет ли свою роль , или ручной разгон приносит больше пользы? В общем, давайте вникать, как все это работает.

Процедура сравнения будет элементарна до безобразия:

А теперь давайте приступать.

Высокие частоты — признак комфортного гейминга

Давайте сразу окунемся в игровую индустрию и по пальцам одной руки перечислим те игры, которым нужна многопоточность для комфортной работы. На ум приходят только последние продукты Ubisoft (Assassin"s Creed Origins, Watch Dogs 2), старичок GTA V, свежий Deus Ex и Metro Last Light Redux. Данные проекты с легкостью «съедят» все вакантные вычислительные мощности процессора, включая ядра и потоки.

Но это скорее исключение из правил, поскольку остальные игры более требовательны именно к частоте ЦП и ресурсам видеопамяти. Иными словами, если вы решите запустить старый добрый DOOM на AMD Ryzen Threadripper 1950X c его 16 вычислительными ядрами (дорогой, мощный), то будете крайне разочарованы ввиду следующих факторов:

  • FPS будет низким;
  • большинство ядер и потоков простаивает;
  • переплата крайне сомнительна.

А все потому, что этот чип ориентирован на профессиональные вычисления, рендеринг, обработку видео и иные задачи, в которых «решают» именно и потоки, а не частотный потенциал.
Меняем AMD на Intel Core i5 8600К и видим неожиданный результат — количество кадров увеличилось, стабильность картинки возросла, все ядра задействованы оптимально. А если разогнать камень, то картина получится и вовсе шикарная. Все потому, что гейминг до сих пор корректно воспринимает от 4 до 8 ядер (не считая вышеописанных исключений), и дальнейший рост физических и виртуальных потоков попросту неоправдан, приходится гнать .

В каких случаях нужна многопоточность

А теперь давайте сравним в профессиональных задачах два топовых решения от Intel и AMD: Core 7 8700K (6/12, L3 — 9 МБ) и Ryzen 7 2700x (8/16, L3 — 16 МБ). И здесь уже количество ядер и потоков играет главную и лучшую роль в следующих задачах:

  • архивация;
  • обработка данных;
  • рендеринг;
  • работа с графикой;
  • создание сложных 3D-объектов;
  • разработка приложений.

Стоит отметить, что если программа не рассчитана на мультипоточность, то Intel одерживает пальму первенства только за счет большей частоты, но в остальных случаях лидерство остается за «красными».

Подведем итоги

А теперь давайте рассуждать логично. И AMD и Intel за последние несколько лет неплохо так выровняли свои показатели в плане производительности. Оба чипа построены для новейших платформ Ryzen+ (AM4) и Coffee Lake (s1151v2) и имеют отличный разгонный потенциал, а также задел на будущее.

Если для вас первостепенной задачей является получение высокого FPS в современных игровых проектах, то «синяя» платформа здесь выглядит более оптимальным решением.

Однако стоит понимать, что высокий фреймрейт будет заметен только на мониторах с частотой от 120 Гц и выше. На 60-герцовых вы просто не заметите разницы в плавности картинки.

Вариант от AMD при прочих равных выглядит более «всеядным» и универсальным, да и ядер с у него больше, а значит открываются новые перспективы вроде того же стриминга, который так популярен на Youtube.

Надеемся, теперь вы понимаете, в чем разница между частотой и количеством вычислительных ядер, и в каких случаях переплата за потоки оправдана.

Я считаю, что в данной борьбе, победителя здесь быть не может, так как битва в сравнениях была в разных весовых категориях.

На этой ноте закончим, не забывайте подписываться на блога, пока пока.